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a b s t r a c t 

Low-textured image stitching remains a challenging problem. It is difficult to achieve good alignment of 

images and it is easy to break images structures are often broken due to insufficient and unreliable point 

correspondences. Moreover, because of the viewpoint variations between multiple images, the stitched 

images suffer from projective distortions. To solve these problems, this paper presents a line-guided local 

warping method with a global similarity constraint for image stitching. Line features which serve well 

for geometric descriptions and scene constraints, are employed to guide image stitching accurately. On 

one hand, the line features are integrated into a local warping model through a designed weight func- 

tion. On the other hand, line features are adopted to impose strong geometric constraints, including line 

correspondence and line colinearity, to improve the stitching performance through mesh optimization. 

To mitigate projective distortions, we adopt a global similarity constraint, which is integrated with the 

projective warps via a designed weight strategy. This constraint causes the final warp to slowly change 

from a projective to a similarity transformation across the image. Finally, the images undergo a two- 

stage alignment scheme that provides accurate alignment and reduces projective distortion. We evaluate 

our method on a series of images and compare it with several other methods. The experimental results 

demonstrate that the proposed method provides a convincing stitching performance and that it outper- 

forms other state-of-the-art methods. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Because images are limited by a camera’s narrow field of view

FOV), image stitching combines a group of images with overlap-

ing regions to generate a single, but larger, mosaic with a wider

OV. Image stitching has been widely used in many tasks in pho-

ogrammetry [1] , remote sensing [2] and computer vision [3,4] . 

In the literature [5] , there are typically two main approaches

hat have been attempted to produce image stitching with satis-

actory visual results: (1) developing better alignment models and

2) employing image composition algorithms, such as seam cutting

6] and blending [7] . Image alignment is the first and most cru-

ial step in image stitching. Although advanced image composition

ethods can reduce stitching artifacts and improve the stitching

erformance, they cannot address obvious misalignments. When a

eam or blending area coincides with misaligned areas, the cur-
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ent image composition schemes will fail to provide a satisfactory

titched image [8] . 

Most previous image stitching methods estimate global geomet-

ic transformations ( e.g. , similarity, affine or projective transforma-

ion) to bring the overlapping images into alignment. However,

hese methods require the camera rotation to have a fixed projec-

ive center or the scenes to have limited depth variance [9] , which

re restrictive assumptions that are often violated in practice, re-

ulting in artifacts in the stitched images, e.g., misalignments or

hosting. 

To compensate for these geometric assumptions, some

patially-varying warping methods for image stitching have

een proposed in recent years that can be roughly categorized

nto two groups: multiple homographies and mesh-based warping.

he former estimates multiple homographies computed from local

eometries to align the input images, e.g., as-projective-as-possible

APAP) warping [5] . Mesh-based warping first pre-warps the image

sing global homography; then, it adopts some energy functions

o optimize the alignment, treating it as a mesh warping problem,

.g., content-preserving warping (CPW) [10] . The high degrees of

reedom (DoFs) involved in these methods can better handle
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Fig. 1. The challenges in image stitching. (a) The original images and the detected features (points & lines). (b) The stitching results. From top to bottom, the images are the 

results of global homography [13] , CPW [10] , and APAP [5] . The details are highlighted to simplify the comparison. The red boxes denote alignment errors; the yellow boxes 

show distortions; the blue boxes denote structural deformations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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parallax than can global transformations; thus, they can provide

satisfactory stitching results. However, some challenges remain to

be addressed: 

- The current methods often fail to achieve satisfactory alignment

in low-texture images. Due to the high DoFs, these methods in-

evitably depend heavily on point correspondences [11] . How-

ever, keypoints are difficult to detect in some low-texture im-

ages because the homogeneous regions, such as indoor walls,

sky, artificial structures, are not distinctive enough to provide

rich and reliable correspondences. Hence, these methods of-

ten erroneously estimate the warping model, which causes mis-

alignments. 

- The influence of projective distortions has not been fully con-

sidered. Because many methods are based on projective trans-

formations, e.g., CPW [10] , APAP [5] , the stitched results of im-

ages taken under various photographing viewpoints may suffer

from projective distortions [12] in the non-overlapping regions,

including both shape and perspective distortions. For instance,

some regions in the stitched image may be stretched or non-

uniformly enlarged, and it is difficult to preserve the perspec-

tive of each image ( Fig. 1 (b)). 

- The image structure distortion has not been fully considered.

Some local warping models, e.g., CPW [10] , APAP [5] , may bend

line structures, especially when stitching low-texture images.

For instance, insufficient or unreliable keypoints cause APAP to

erroneously estimate some local transformations, which results

in misalignment of the local regions and distorts the line struc-

tures that span multiple local regions, while CPW employs only

feature correspondences and content smoothness to optimize
the global transformation and does not consider structural con-

straints. 

The challenges to image stitching can be clearly seen in Fig. 1 .

ig. 1 (a) shows the original images and the detected features

points and lines). In some homogeneous regions, only a few points

re detected and matched, making it difficult to estimate an ac-

urate transformation. Fig. 1 (b) shows the stitching results from

lobal homography [13] , CPW [10] , and APAP [5] . When the restric-

ive imaging conditions are violated, the global homography model

oes not fit the data correctly; thus, it results in obvious misalign-

ents (the red boxes). In low-textured areas with insufficient cor-

espondence (red boxes), CPW lacks sufficient data to align the

re-warping result, and APAP cannot estimate accurate local homo-

raphies, causing obvious misalignments. The lack of point corre-

pondences also leads to structural deformations in CPW and APAP

blue boxes), where straight lines are deformed into curves. Due

o the projective transformation used in these three models and

he fact that no measures are taken to eliminate distortions, the

titched image results of these methods suffer from severe projec-

ive distortions (the yellow boxes), where the chairs are enlarged

on-uniformly. 

The above problems provide strong motivation for improving

he performance of image stitching. To our knowledge, only a few

tudies have been conducted to address either of the aforemen-

ioned problems; consequently, additional effort s are needed. Re-

ent studies [14,15] have reported that line features can be used to

mprove the alignment performance, and [12,16] recently showed

hat similarity transformations are advantageous in reducing dis-

ortions. Inspired by these studies, our work is based on the fol-

owing two consensuses: 
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- In most man-made environments, line features are relatively

abundant, thus they can be regarded as effective supplements

to point features that can provide rich correspondences for ac-

curate warping model estimation [17] . Furthermore, line fea-

tures depict the geometrical and structural information of

scenes [18–20] ; thus, they can also be used to preserve the im-

age structures. 

- Similarity transformation [12] does not introduce shape distor-

tion because it consists only of translation, rotation and uni-

form scaling. A similarity transformation can be regarded as a

combination of panning, zooming and in-plane camera rotation;

therefore, it preserves the viewing direction. 

It is thus of great interest to investigate how to integrate line

eatures and global similarity transformation to improve the im-

ge stitching performance. To this end, this paper presents a line-

uided local warping model for image stitching with a global sim-

larity constraint. The good alignment is achieved by a two-stage

cheme, i.e. , pre-warping that is jointly estimated using both point

nd line features and extended mesh-based warping which is used

o further align the pre-warping result. Line features are integrated

nto mesh-based warping framework and act as structural con-

traints to preserve image structures after pre-warping. To pre-

ent undesirable distortions, the global similarity transformation is

dopted as a similarity constraint and used to adjust the estimated

arping model. The contributions of our work are as follows: 

- We introduce line features to guide image stitching, especially

in low-texture cases. Line features play a significant role mainly

in two aspects: 1) they are integrated into the local warp-

ing model using a weight function to achieve accurate align-

ment; 2) they are employed to impose strong geometric con-

straints (i.e. line correspondence and line collinearity) to refine

the stitching performance. 

- We present a weight integration strategy to combine the global

similarity constraint with models of global homography or mul-

tiple homographies. Using this strategy, the resultant warp

achieves a smooth transition from a projective to a similarity

transformation across the image, which significantly mitigates

the projective distortions in non-overlapping regions. 

- We propose a robust and effective two-stage stitching frame-

work that combines the local multiple homographies model

and the mesh-based warping model with line and global sim-

ilarity constraints. The proposed method addresses local varia-

tion well to ensure image alignment by local stitching and flex-

ible refinement. The method also preserves image structures

and multi-perspective through strong geometrical and struc-

tural constraints. The proposed method achieves a state-of-the-

art performance. 

The remainder of this paper is organized as follows.

ection 2 gives a brief review of the related works. Section 3 de-

cribes the proposed method in detail. The experimental results

nd analyses are reported in Section 4 . Finally, we draw some

onclusions and provide remarks in Section 5 . 

. Related works 

Numerous studies have been devoted to image stitching; a com-

rehensive survey can be found in [9] . The global homography

odel [13] works well for planar scenes or for scenes acquired

ith parallax-free camera motion, but violation of these assump-

ions may lead to ghosting artifacts. 

Recently, spatially-varying warping methods have been pro-

osed that flexibly address parallax. Liu et al. [10] proposed the

ontent-preserving warping (CPW) method, which was first used

n video stabilization. CPW adopts registration error and content
moothness to refine the pre-warping result obtained by global ho-

ography. A simple extension of global homography method was

resented in [21] , called dual-homography warping (DHW), which

ivides the entire scene into two planes: a distant plane and a

round plane. The final warping is obtained by a linear combi-

ation of these two homographies estimated by the point corre-

pondences of each plane. However, this method has difficulties

n complex scenes. Lin et al. [22] proposed the smoothly varying

ffine (SVA) warping method for image stitching. SVA can handle

ocal deformations while preserving global affinity. However, be-

ause there are insufficient DoFs in the affine model, SVA cannot

chieve projective warping. Zaragoza et al. [5] extended the previ-

us method and proposed an as-projective-as-possible (APAP) warp-

ng method for image stitching. APAP achieves a smoothly vary-

ng projective stitching field estimated by a moving direct linear

ransformation (DLT) [23] . It maintains a global projection while

llowing local non-projective deviations. Zhang et al. [3] proposed

 parallax-tolerant image stitching method that seeks the optimal

omography evaluated by the seam cost and uses CPW to refine

he alignment. However, except for SVA, these methods are based

n projective transformations, thus the stitched images often suffer

rom projective distortions. In addition, the resulting images may

uffer from structural deformations because of the nonlinear local

ransformations in the model. 

In recent years, similarity transformation, which is composed of

ranslation, rotation and scaling, was introduced. Similarity trans-

ormation constructs a combined warping with projective trans-

ormations to constrain the projective distortions. Chang et al.

12] proposed a shape-preserving half-projective (SPHP) warping for

mage stitching that adopts projective, transition and similarity

ransformation to achieve a gradual change from a projective to a

imilarity transformation across the image. SPHP can significantly

educe the distortions and preserve the image shape; however, it

ay introduce structural deformations, e.g., line distortions, when

he scene is dominated by line structures. Lin et al. [16] pro-

osed an adaptive as-natural-as-possible (AANAP) warping that lin-

arizes the homography in the non-overlapping regions and com-

ines these homographies with a global similarity transformation

sing a direct and simple distance-based weight strategy to mit-

gate perspective distortions. However, some distortions still exist

ocally when stitching images ( Fig. 13 (b)). 

It is worth noting that spatially-varying warping-based image

titching is highly dependent on point correspondences. When

here are insufficient reliable keypoints (such as in low-texture im-

ges), the effects of the estimated models will degrade. More re-

ently, Joo et al. [14] introduced line correspondences into the lo-

al warping model, but this approach requires a user to annotate

he straight lines, and setting the parameters for this method is

omplex. Li et al. [15] proposed a dual-feature warping method for

otion model estimation that combines line segments and points

o estimate the global homography. However, this method still suf-

ers from projective distortions. 

. The proposed approach 

This section introduces the proposed method for image stitch-

ng in detail. The main idea is to integrate line constraints and a

lobal similarity constraint into a two-stage alignment framework.

he outline of our method is illustrated in Fig. 2 . The first-stage

lignment (presented in Section 3.1 ) involves estimating an accu-

ate warping model using line guidance. Line features are adopted

s alignment constraints to jointly estimate both global and local

omography with point correspondences, which provide rich and

eliable correspondences even in low-texture images. To further

mprove the stitching performance, we adopt mesh optimization

ased on the extended content-preserving warping framework pre-
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Fig. 2. Schematic diagram of the proposed approach: (a) feature matching, (b) line-guided warping, (c) distortion reduction by global similarity constraint, (d) alignment 

refinement with line constraints, (e) image blending. 
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sented in Section 3.2 . The linear feature constraints ( i.e. , line corre-

spondence and line collinearity) are combined to further refine the

alignment and preserve the image structures. Finally, to mitigate

the projective distortions, a global similarity transformation, esti-

mated by a set of selected points in the approximate image projec-

tion plane, is employed to constrain the distortions caused by pro-

jective warping via a weighted integration strategy ( Section 3.3 ).

Based on the proposed warping model, we are able to achieve ac-

curate and distortion-free image stitching. 

3.1. Line-guided warping model 

Point features are often adopted for image alignment. Given the

target and reference images I , I 
′ 
, R × R �→ R , and a pair of match-

ing points: p = [ x, y, 1] and p 

′ = [ x 
′ 
, y 

′ 
, 1] where x, y ∈ R , the global

homography, H ∈ R 

3 ×3 : p 

′ = Hp , can be estimated by minimizing

the algebraic distance 
∑ 

i ‖ p 

′ 
i 
× H p i ‖ 2 between a set of matching

points, where i is the index of matching points. 

However, as stated previously, keypoints extracted from images

are rare in some low-texture scenarios, thus it is difficult to es-

timate an accurate global homography for image stitching. Hence,

line features, which are salient in artificial scenarios, are adopted

as the alignment constraint to guide the global homography esti-

mation. 

Let l = [ a, b, c ] T , l 
′ = [ a 

′ 
, b 

′ 
, c 

′ 
] T , with a, b, c ∈ R be a pair of

matching lines in the target and reference images respectively.

Here, p 

0 , 1 = [ x 0 , 1 , y 0 , 1 , 1] denotes the two endpoints of line l .

They satisfy l 
′ T 

H p 

0 , 1 = 0 , which means that the endpoints trans-

formed by H from l should lie on the corresponding line l 
′ 
. There-

fore, H can be estimated by minimizing the algebraic distance∑ 

j ‖ l ′ j 
T × Hp 

0 , 1 
j 

‖ 2 using a set of matching lines, where j is the in-

dex of the matching lines. 

The homography is then estimated jointly by point and line cor-

respondences: 

ˆ h = arg min 

h 

(∑ 

i 

∥∥p 

′ 
i × Hp i 

∥∥2 + 

∑ 

j 

∥∥∥l 
′ 
j 

T × Hp 

0 , 1 
j 

∥∥∥2 
)

= arg min 

h 

(∑ 

i 
‖ 

A i h ‖ 

2 + 

∑ 

j 

∥∥B j h 

∥∥2 
)
, s.t. ‖ 

h ‖ 

= 1 , 

(1)
here h = [ h 1 , h 2 , h 3 , h 4 , h 5 , h 6 , h 7 , h 8 , h 9 ] is the column vector

epresentation of H , and A i , B j ∈ R 

2 ×9 are the coefficient matrixes

omputed by the i th matching point and j th matching line, respec-

ively. 

Stacking all the coefficient matrices of points ( A i ) and lines

 B j ) vertically into a unified matrix, C = [ A ; B ] , and Eq. (1) can be

ewritten as follows: 

ˆ 
 = arg min 

h 

‖ 

Ch ‖ 

2 
, s.t. ‖ 

h ‖ 

= 1 , (2)

he global homography H is the smallest significant right singu-

ar vector of C . Note that before estimation, all the entries of the

tacked matrices [ A i ; B j ] should be normalized for numerical sta-

ility. In this study, we adopt the point-centric normalization ap-

roach proposed in [24] . 

Local homography can handle parallax better than global ho-

ography due to the higher DoFs [5] . Therefore, we extend the

ine-guided global homography to local homographies. The input

mages are first divided into uniform grid meshes. The local ho-

ography h k of the k th mesh located at p ∗ = [ x ∗, y ∗] is estimated

y 

 k = arg min 

h 

‖ 

W k Ch ‖ 

2 
, s.t ‖ 

h ‖ 

= 1 , (3)

here W k = diag 
([

w 

p , w 

l 
])

, w 

p ∈ R 

2 N , and w 

l ∈ R 

2 M denote

he weight factors for the point and line correspondences,

espectively. Specifically, w 

p = [ w 

p 1 w 

p 1 . . . w 

p N w 

p N ] , and w 

l =
 w 

l 1 w 

l 1 . . . w 

l M w 

l M ] . Therefore, the solution is the smallest signifi-

ant right singular vector of WC . 

The point weight factor w 

p is calculated by the Gaussian

eighted Euclidean distance: 

 

p i = max 
(
exp 

(
−‖ 

p ∗ − p i ‖ 

2 
/ σ 2 

)
, η

)
, (4)

here p i is the i th keypoint, σ is the scale parameter, and η ∈ [0, 1]

s used to avoid the numerical issues caused by the small weights

hen the mesh center p 

∗ is far away from keypoint p i , as shown

n Fig. 3 (a). 

The line weight factor w 

l is calculated as follows: 

 

l j = max 

(
exp 

(
−d l 

(
p ∗, l j 

)2 
/ σ 2 

)
, η

)
, (5)
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Fig. 3. Weight computation of points and lines. Left: (a) The distance between mesh center p ∗ and keypoint p i . Right: (b) The distance between mesh center p ∗ and line 

segment l j . 
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here d l ( p 

∗ , l j ) is the shortest distance between the mesh center

 

∗ and line l j , calculated as follows: 

 l ( p ∗, l j ) = 

⎧ ⎨ 

⎩ 

min ( 
∥∥p ∗ − p 

0 
j 

∥∥, 
∥∥p ∗ − p 

1 
j 

∥∥) ( a ) ∣∣a j x ∗ + b j y ∗ + c j 
∣∣/ √ 

a 2 
j 
+ b 2 

j ( b ) 
, (6) 

here p 

0 
j 
, p 

1 
j 

are the endpoints of line l j : l j = [ a j , b j , c j ] . As shown

n Fig. 3 (b), when p 

∗ is in the R 1 or R 2 region, the d l is calculated

y (a), and when p 

∗ is in the R 3 region, d l is calculated by (b). From

qs. (4) and (5) , the weight is greater when the keypoint or line is

loser to the mesh center p 

∗ , which causes the local homography

o be a better fit for the local structure around p 

∗ . 

.2. Alignment refinement with line constraints 

This section describes the adoption of mesh optimization as the

econd step of the two-stage alignment scheme to further improve

he performance of image stitching. Content-preserving warping is

 mesh-based warping method that was first used for video sta-

ilization in [10] and, later, successfully applied to image stitching

25–27] . It is well-suited for small local adjustments. In our work,

he line feature constraints ( e.g., the line correspondence constraint

nd line colinearity constraint) are integrated into the content-

reserving warping framework to both maintain the image struc-

ures and refine the alignment satisfactorily. 

The target image I is first divided into a regular grid mesh. In

ur case, the grid mesh is used to guide the image warping. Sup-

osing V denotes the vertices of the grid mesh in the pre-warping

mage transformed by the line-guided warping model. Alignment

efinement is performed to find a group of deformed vertices V

sing energy optimization. An arbitrary point p in the pre-warping

mage can be represented by a linear combination of four mesh

ertices V = [ V 1 , V 2 , V 3 , V 4 ] 
T in its locating quad: p = w 

T V , and

 = [ w 1 , w 2 , w 3 , w 4 ] 
T are calculated by inverse bilinear interpola-

ion [28] and sum to 1. Therefore, the image warping problem can

e formulated as a mesh warping problem. In fact, it is an opti-

ization problem in which the objective is to accurately align the

re-warping image to the reference image while avoiding obvious

istortions. The energy terms used in this paper are detailed be-

ow. 

.2.1. Content-preserving warping 

Content-preserving warping [25] includes three energy terms: a

oint alignment term, a global alignment term and a smoothness

erm. 

The point alignment term E p is used to align the feature points

n the target image or pre-warping image to the corresponding

oints in the reference image as much as possible. It is defined

s follows: 

 p = 

∑ 

∥∥w 

T 
i V i − p 

′ 
i 

∥∥2 
, (7) 
i 
here p 

′ 
i 

is the matching point in the reference image. This term

nsures the alignment of the overlapping region. 

The global alignment term E g is used to constrain the image re-

ions without feature correspondences to be as consistent as pos-

ible with the pre-warping result: 

 g = 

∑ 

i 

∥∥V i − V i 

∥∥2 
, (8) 

here V i is the corresponding vertex in the pre-warping result. 

The smoothness term E s encourages each grid in the pre-

arping result to preserve similarity during warping to avoid

hape distortions as much as possible. Precisely, given a triangle

 V 0 V 1 V 2 in the pre-warping result, the vertex V 0 can be repre-

ented by V 1 and V 2 as shown below: 

 1 = V 2 + μ( V 3 − V 2 ) + νR ( V 3 − V 2 ) , R = 

[
0 1 

−1 0 

]
, (9)

here μ, ν are the coordinate values of V 0 in the coordinated sys-

em defined by the other two vertices. During warping, the triangle

ses a similarity transformation to preserve the relative relation-

hip of the three vertices and avoid local distortions. The smooth-

ess term is 

 s (V 1 ) = ϕ ‖ 

V 1 − (V 2 + μ(V 3 − V 2 ) + νR (V 3 − V 2 )) ‖ 

2 
, (10)

here ϕ is a weight used to measure the salience of the trian-

le as in [10] . The weight more strongly preserves the shapes of

igh-salience regions than those of low-salience regions. The full

moothness energy term is formed by summing Eq. (10) over all

he vertices. 

.2.2. Line correspondence term 

However, content-preserving warping terms only ensure the

oint alignment in the overlapping regions; thus, the line corre-

pondences are taken into consideration to further improve the

lignment. 

A line correspondence term is utilized to ensure that the line

orrespondences are well aligned. Let l j , l 
′ 
j 

be a pair of correspond-

ng lines in the target and reference images, respectively. Line l j 
s cut into several short line segments by the edges of mesh if

he line l j traverses this mesh. The endpoints of the short line

egments from l j are denoted by p j, k , where k is the index of

he endpoints, and p 

′ 
j,k 

denotes the endpoints in the pre-warping

mage transformed from p j, k by the preceding warping process,

 

′ 
j,k 

= w 

T 
j,k 

V j,k . The line correspondence term can be expressed by

he idea that the distance from p 

′ 
j,k 

to the corresponding line l 
′ 
j 

hould be the minimum distance: 

 l = 

∑ 

j,k 

∥∥∥∥(l 
′ 
j 

T · w 

T 
j,k V j,k ) / 

√ 

a 
′ 
j 

2 + b 
′ 
j 

2 

∥∥∥∥2 

. (11) 

The line correspondence term not only enhances the image

lignment but also, together with line collinearity term below, pre-

erves the straightness of line structures. 
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Algorithm 1 Global similarity constraint. 

Input: The local homography { H i } n i =1 
of each pair of images 

Output: The improved homograph { H 

′ 
i 
} n 

i =1 
constrained by the 

global similarity transformation 

1: Compute the rotation angle θ (16) 

2: Construct a (u, v ) coordinate system with origin o by rotation 

3: for each local homography H i do 

4: Compute the projection distance of the current grid on the 

ou axis 

5: Compute the weight coefficients τ and ξ (18) 

6: Integrate H i with the global similarity transformation S (14) 

7: end for 

8: for each grid in the reference image do 

9: Adjust the warp T 
′ 
i 
= H 

′ 
i 
H 

−1 
i 

10: end for 

t  

t

H  

w  

fi  
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3.2.3. Line colinearity term 

However, the above terms may not reduce the distortions ( e.g.,

line structure distortions) in the non-overlapping regions where

there are few point or line correspondences. To capitalize on the

line features and preserve the line structure, we adopt the line

collinearity constraint. 

The line collinearity term is used to preserve the straightness

of linear structures in the target image as much as possible. Let

p i, k denote the endpoints and intersecting points of line l i in the

non-overlapping regions with the grid. Assume that p 

′ 
i,k 

denotes

the corresponding points of p i, k in the pre-warping result. The line

should maintain its straightness after warping, that is, the trans-

formed points p 

′ 
i,k 

should lie on the same line. This can be repre-

sented by the distance from the endpoints p 

′ 
i,k 

to the line ̂  l i which

should be the minimum distance. Line ˆ l i is calculated by the head

and tail endpoints of p 

′ 
i,k 

. The term is defined as follows: 

E c = 

∑ 

i,k 

∥∥∥∥( ̂ l T i · w 

T 
i,k V i,k ) / 

√ 

ˆ a 2 
i 

+ ̂

 b 2 
i 

∥∥∥∥2 

. (12)

Together, the line collinearity term and the line correspondence

term maintain the line structures well. 

3.2.4. Objective function 

The above five energy terms are then combined as an energy

optimization problem in which the objective function is 

E = αE p + βE g + γ E s + δE l + ρE c , (13)

where α, β , γ , δ, ρ are the weight factors for each energy term.

In our implementation, α = 1 , β = 0 . 001 , γ = 0 . 01 , δ = 1 , and ρ =
0 . 001 . The above function is quadratic; consequently, it can be

solved by a sparse linear solver. The final result is obtained through

texture mapping. 

3.3. Distortion reduction by global similarity constraint 

To reduce the projective distortions in the non-overlapping re-

gions, the global similarity transformation is adopted to adjust the

local warping model. 

Chang et al. [12] has shown that similarity transformation is ef-

fective in mitigating distortions. If we can find a similarity trans-

formation that approximately represents the camera motion of the

image projection plane, that transformation can be applied to off-

set the camera motion [16] . RANSAC [29] is used to iteratively seg-

ment the matching points. Each group of point correspondences

can be used to estimate a similarity transformation. The estima-

tion with the smallest rotation angle is selected as the optimal

candidate [30] . As shown in Fig. 4 , the group of points in green is

chosen to estimate the global similarity transformation. The plane

composed of green points approximates the image projection plane

because the camera is nearly perpendicular to the ground when

shooting. 

3.3.1. Similarity constraint 

An image patch can be transformed by a projective transforma-

tion (e.g. homography), which provides good alignment but may

cause distortions, such as stretching. An image patch can also be

warped by the similarity transformation, which, although it intro-

duces no distortions, may result in poor alignment due to the lim-

ited DoFs. Integrating two types of transformations using weights,

can therefore both ensure good alignment and reduce distortions.

The similarity constraint procedure is described in Algorithm 1 .

The global similarity transformation is combined with global or lo-

cal homographies using weight factors. To create a smooth transi-
ion, the whole image should be considered. The weight integra-

ion is calculated as follows: 

 

′ 
i = τH i + ξS , (14)

here H i is the homography in the i th grid mesh, and H 

′ 
i 

is the

nal homography in the i th grid mesh. Here, S is the similarity

ransformation, and τ and ξ are weight coefficients with τ + ξ = 1 .

he calculation of these two weights will be described later. In a

lobal homography model, the homography of every grid mesh is

he same. 

The corresponding warping procedure should also be applied to

he reference image because the similarity transformation also ad-

usts the overlapping regions. The warping procedure for the refer-

nce image can be formulated as follows: 

 

′ 
i = H 

′ 
i H 

−1 
i 

, (15)

here T 
′ 
i 

is the warping procedure for the reference image in the

 th grid mesh. 

As shown in Fig. 5 , when a point is far from the overlapping

egions (especially the distorted non-overlapping regions) the pro-

edure assigns a high weight for the similarity transformation to

itigate the distortions as much as possible. In contrast, for points

ear the overlapping regions, it assigns a high weight for the ho-

ography to ensure accurate alignment. Using this weight combi-

ation, the final warp smoothly changes from a projective to a sim-

larity transformation across the image, which preserves the image

hape and maintains the multi-perspective. 

.3.2. Weighting strategy 

The weight coefficient calculation stems from the analysis of

rojective transformation. According to Chum et al. [31] , let R be

 rotation transformation that transforms the image coordinate ( x,

 ) to a new coordinate ( u, v ). Based on p 

′ = Hp , a new projec-

ive transformation Q that transforms ( u, v ) to (x 
′ 
, y 

′ 
) meets p 

′ =
 [ u, v , 1] T = HR [ u, v , 1] T , where H = [ h 1 , h 2 , h 3 ; h 4 , h 5 , h 6 ; h 7 , h 8 , 1] ,

nd Q = [ q 1 , q 2 , q 3 ; q 4 , q 5 , q 6 ; q 7 , q 8 , 1] . 

Supposing that the rotation angle is θ = arctan ( h 8 / h 7 ) , we can

btain q 8 = −h 7 sin θ + h 8 cos θ = 0 . Then, Q can be decomposed as

ollows: 
 

q 1 q 2 q 3 
q 4 q 5 q 6 
−c 0 1 

] 

= 

[ 

q 1 + c q 3 q 2 q 3 
q 4 + c q 6 q 5 q 6 

0 0 1 

] 

︸ ︷︷ ︸ 
Q a 

[ 

1 0 0 

0 1 0 

−c 0 1 

] 

︸ ︷︷ ︸ 
Q p 

, (16)

here c = 

√ 

h 2 
7 

+ h 2 
8 
. Here, Q a is the affine transformation, and Q p 

s the projective transformation. Defining the local scale change

32] at point ( u, v ) under the projective transformation as the de-

erminant of the Jacobian of Q at point ( u, v ), the local scale change
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Fig. 4. The optimal point correspondences for global similarity transformation estimation. 

Fig. 5. Weight map of the right image in Fig. 4 . Left: weight map of homography. Right: weight map of global similarity transformation. The color denotes the weight value. 

Fig. 6. Weight strategy for global similarity transformation and homography. 
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s calculated as follows: 

et J ( u, v ) = det J a (u, v ) · det J p ( u, v ) = λa · 1 

( 1 − cu ) 
3 
, (17)

here det denotes the determinant, and λa is independent of u and

 . It can be seen that the local area change derived from Q relies

nly on the u direction. In other words, the distortions of projec-

ive transformation occur only along the u − −axis. Therefore, the

istortions can be effectively eliminated if the weight coefficients

re calculated along the u direction in the ( u, v ) coordinate system.

The weight coefficients are designed based on the distance of

rid points in the u direction; the goal is to provide a gradual

hange from a projective to a similarity transformation across the

mage to preserve the image content in non-overlapping regions.

s shown in Fig. 6 , the center of the reference image is used as

he origin of coordination o , and the unit vector on the u − −axis

enotes 
−→ 

ou = ( 1 , 0 ) . For the arbitrary mesh center p , d is the pro-

ected length of vector 
−→ 

op on the vector 
−→ 

ou . The projected point

 max with a maximum length of d and the projected point p min 

ith a minimum length of d can be calculated. For the i − −th grid,

he weight coefficients are calculated as follows: 

= < 

−−−→ 

p min p i · −−−−−−→ 

p min p max > / 
∣∣−−−−−−→ 

p min p max 

∣∣, (18)

here < 

−−−−→ 

p min p i · −−−−−−→ 

p max p min > denotes the projection length of−−−→ 

 min p i on 

−−−−−−→ 

p max p min , and τ = 1 − ξ . 

. Experimental results and analysis 

This section describes several experiments conducted to assess

he performance of the proposed method on a series of challeng-
ng images. In our experiments, the testing images were acquired

asually, using different shooting positions and angles. 

Given a pair of input images, the keypoints are detected and

atched by SIFT [33] in the VLFeat library [34] . The line features

re detected by a line segment detector (LSD) [35] and matched by

ine-point invariants [36] or line-junction-line [37] . Then, RANSAC

s used to remove the mismatches, and the remaining inliers are

nput to the stitching algorithms. We compared our approach with

everal other methods, e.g., Autostitch [13] , ICE [38] , CPW [10] ,

PAP [5] , SPHP [12] , AANAP [16] . The parameters of the other

ethods were set as suggested in the respective papers and we

sed the source code provided by the authors of the papers to ob-

ain the compared results. For our method, σ is 8.5, and η is 0.01.

he experiments were conducted on a PC with an Intel i3-2120

.3 Ghz CPU and 8GB of RAM. Not considering feature detection

nd matching, the proposed method takes 20–30 s to stitch to-

ether two images with a resolution of 800 × 600. 

To better compare the methods and reduce interference, we

voided post-processing methods such as blending or seam cut-

ing as detailed in [9,39] . Instead, the aligned images are simply

lended by intensity average so that any misalignments remain ob-

ious. 

To assess the accuracy of the image stitching alignment quan-

itatively [40] , the metrics of correlation ( Cor ) [16] and mean geo-

etric error ( Err mg ) [14] are adopted. Cor is defined as one minus

he normalized cross correlation (NCC) over the neighborhood of a

 × 3 window, that is 

or 
(
I , I 

′ ) = 

√ 

1 

N 

∑ 

π

(
1 − NCC 

(
p , p 

′ ))2 
, (19) 

here N is the number of pixels in the overlapping region π , and p

nd p 

′ 
are the pixels in image I and I 

′ 
, respectively. Cor reflects the

issimilarity of two images in the overlapping regions. The smaller

he Cor value is, the better the stitching result is. 

Err mg is defined as the mean geometric error on points and

ines, that is 

r r (p) 
mg = 

1 

M 

∑ M 

i =1 

∥∥ f (p i ) − p 

′ 
i 

∥∥
Err (l) 

mg = 

1 

2 K 

∑ K 

j=1 

∑ 1 

i =0 
d l ( f ( p 

i 
l j 
) , l 

′ 
j ) 

Err mg = ( Err (p) 
mg ∗ M + Err (l) 

mg ∗ 2 K) / (M + 2 K) , (20) 
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Fig. 7. Performance of each constraint in the proposed method on the School images. From top to bottom, the images show the results of (a) APAP, (b) Line-guided APAP 

(LAPAP), (c) LAPAPCPW, (d) LAPAPCPW + LineCorr, and (e) LAPAPCPW + LineCorr + LineCol. The red circles indicate errors or distortions. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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where f : R 

2 �→ R 

2 is the estimated warping, M is the number of

point correspondences, p i and p 

′ 
i 

are a pair of point correspon-

dences, K is the number of line correspondences, and d l denotes

the projected distance of the endpoints of l j to its correspondence

line l 
′ 
j 
. A smaller Err mg value indicates a better stitching result. 

In the following subsections, we first verify the performance of

the proposed method on image alignment and distortion reduc-

tion. Then, we report the experimental comparison results includ-

ing the comparison with the global-based methods and the local-

based methods. 

4.1. Image alignment 

In this section, a series of experiments were conducted to verify

the effectiveness of image alignment by our method. 

Fig. 7 illustrates the performance of each constraint in the pro-

posed method, including the line-guided local warping estima-

tion, the line correspondence constraint, and the line colinear-

ity constraint. Fig. 7 (b) shows the result of line-guided warping
ombined with APAP (LAPAP), which largely improves the align-

ent compared to APAP, as can be clearly seen in the closeup.

owever, LAPAP introduces structural distortions, e.g., the bent

ines on the buildings, shown by red circle in the blue closeup.

ith CPW optimization, LAPAPCPW refines the alignment perfor-

ance (shown in Fig. 7 (c)), but some slight misalignments still

xist. Combined with line correspondence (LineCorr) constraint,

APAPCPW + LineCorr provides good alignment ( Fig. 7 (d)). However,

tructural distortions, e.g. , line deformations, are not handled well

s can be clearly seen in the blue closeup. By adding the line

ollinearity (LineCol) constraint to restrain the structural deforma-

ion, LAPAPCPW + LineCorr + LineCol provides a good stitching result

ith less distortion in this example ( Fig. 7 (e)). Quantitative evalu-

tions of Cor and Err mg are shown in Table 1 . As to Cor , the pro-

osed line correspondence and line collinearity constraint achieve

he comparable results with LAPAPCPW, but the LAPAPCPW pro-

ides larger Err mg , which means larger alignment errors. In addi-

ion, LAPAPCPW + LineCorr generates the best result, but it suffers

rom structural distortions, thus LAPAPCPW + LineCorr + LineCol pro-
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Table 1 

Comparison of constraints on the School images. 

Methods APAP LAPAP LAPAPCPW LAPAPCPW + LineCorr LAPAPCPW + LineCorr+LineCol 

Cor 1.024 0.730 0.666 0.665 0.675 

Err mg 7.611 3.295 3.021 2.698 2.882 

Fig. 8. Comparison with original CPW model [25] on Rooftops . From top to bottom, the images show the results of (a) the original CPW, (b) improved CPW, and (c) our 

method (similarity constraint + improved CPW). Some details are highlighted in the closeup. The red circles indicate errors or distortions. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Comparison with original CPW model on Rooftops . 

Methods Cor Err (p) 
mg Err (l) 

mg Err mg 

Original CPW 6.831 0.825 1.187 1.043 

Improved CPW 6.390 0.973 0.491 0.682 

Proposed 4.903 0.967 0.492 0.681 
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ides the optimal stitching result considering alignment and distor-

ion jointly. 

Fig. 8 shows a comparison of the original point-based CPW

odel [25] and the proposed CPW model on the Rooftops 1 im-

ges. Some errors or distortions are highlighted by the red circles.

he stitching process is based on the proposed two-stage align-

ent. Fig. 8 (a) shows the results from the original CPW model, in

hich misalignments are obvious, especially on the rooftops (red

ircle). Additionally, the roadside trees are stretched. Under the

onstraints of line features, Fig. 8 (b) improves the alignment per-

ormance and produces more accurate results. As can be seen, line

eatures provide a better geometric description than do point fea-

ures alone, and the line features function as strong constraints for

mage stitching. Fig. 8 (c) shows the final stitching results. Due to

he global similarity constraint, the distortions around the road-

ide trees are largely mitigated, and the proposed method achieves

 satisfactory stitching result. Table 2 shows the quantitative com-

arison. The improved CPW model largely reduces the alignment

rrors (mainly line errors and total error). By using the similarity

onstraint, the proposed method obtains a lower Cor . 
1 The Rooftops images were acquired from the open dataset of Lin et al. [22] . 

l  

o  

c  

m

Next, we compared the proposed method with other flexible

arping methods to evaluate the alignment performance, namely,

lobal homography (baseline) [13] , CPW (using global warping for

he initial alignment) [10] , and APAP [5] . For completeness, the

roposed method is also compared with the Image Composite Ed-

tor (ICE) [38] (a common commercial tool for image stitching) by

nputting two images at once. For ICE, we used the final post-

rocessed results for the comparison because the original align-

ent results are not obtainable in the standard version of ICE. In

ddition, no quantitative comparison of ICE is provided. 

Fig. 9 shows the Desk image pair and the detected feature. For

ost of the low-textured areas, the keypoints are difficult to ex-

ract, resulting in insufficient matching points for the estimation of

arping model. However, line features can be used as an effective

omplement for alignment purposes. 

The comparison results are shown in Fig. 10 . Because the im-

ges violate the assumptions, the baseline warp is unable to align

hem properly; it produces obvious misalignments (see the red

oxes in Fig. 10 (a)). ICE, CPW, and APAP provide relatively bet-

er stitching results, but a non-negligible number of ghost artifacts

emain. In Fig. 10 (b), although ICE uses blending and pixel selec-

ion to conceal the misalignments, the post-processing is clearly

ot completely successful; for instance, there are obvious misalign-

ents on the vertical edge of the desk. Due to an insufficient

umber of corresponding keypoints along the vertical edge of the

esk, CPW and APAP cannot provide an accurate warping model

or image alignment; consequently, ghosting occurs in these re-

ions (see the red boxes in Fig. 10 (c) and (d)). With the help of

ine correspondences and the two-stage robust alignment scheme,

ur method results in satisfactory stitching performance with ac-

urate alignment and few ghost artifacts ( Fig. 10 (e)). Note that our

ethod also reduces the need for post-processing. 
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Fig. 9. The Desk image pair for the assessment of image alignment. 

Fig. 10. Comparison of image alignment for stitching on the Desk image pair. From top to bottom, the results are (a) Baseline [13] , (b) ICE [38] , (c) CPW [10] , (d) APAP [5] , 

and (e) our method. Some details are highlighted to simplify the comparison. The red boxes show errors, and the green boxes show satisfactory stitching. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Comparison of alignment on Desk . 

Methods Cor Err (p) 
mg Err (l) 

mg Err mg 

Baseline 0.390 4.894 5.632 5.001 

CPW 0.299 1.534 3.703 1.849 

APAP 0.360 2.652 4.407 2.907 

Proposed 0.169 1.562 0.594 1.422 

 

 

 

p  

E  

r  

m

4

 

t  

m  

t  

b  
Table 3 depicts the Cor and Err mg values of the compared meth-

ods on the Desk image pair. As listed, CPW’s stronger constraint

on point correspondences results in a smaller alignment error on
oint Err 
(p) 
mg ; however, the alignment errors on line Err (l) 

mg and

rr mg remain large. The proposed method reduces the geomet-

ic error and results in better accuracy than do the other tested

ethods. 

.2. Distortion reduction 

This section validates the effectiveness of our method in dis-

ortion reduction. As shown in Fig. 11 , APAP adopts the local ho-

ographies for alignment, which aims to be both globally projec-

ive while allowing local deviations. APAP provides good alignment,

ut the stitched image suffers from projective distortions. For in-
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Fig. 11. Performance of the proposed method to reduce projective distortions. 

Fig. 12. Distortion reduction comparison with the SPHP method. From top to bottom, the results are (a) APAP [5] , (b) SPHP [12] , (c) SPHP-NR [12] , and (d) our method. Some 

details are highlighted to simplify the comparison. 

s  

t  

o  

i  

o

 

[  

o

 

[  

[  

o

t  

r  

I  

t  

m  

F  

l  

(  

s  

c  

i  
tance, the buildings are undesirably stretched and not parallel to

he temples, in addition, the perspective distortions in the non-

verlapping regions are obvious. In contrast, using a global similar-

ty constraint, the proposed warping model preserves the shapes

f objects and maintains the perspective of each image. 

To investigate the distortion reduction performance, SPHP

12] and AANAP [16] were compared with the proposed method

n the Railtracks and Temple Square image pairs. 2 

Fig. 12 shows the stitching results of the four methods, APAP

5] , SPHP [12] , SPHP with an assumption of no rotation (SPHP-NR)

12] , and our method. Due to its simple extrapolation of projective
2 The Railtracks and Temple Square images were acquired from the open dataset 

f Zaragoza et al. [5] . 

e  

s

ransformation to non-overlapping regions, the APAP ( Fig. 12 (a))

esult shows projective distortions in the non-overlapping regions.

n the blue box in the closeup, the car is enlarged, and the palm

ree is obviously slanted. By introducing the similarity transfor-

ation, SPHP can largely mitigate these projective distortions. In

ig. 12 (b), SPHP preserves the shape of the car, but it has a prob-

em with the unnatural rotation. In addition, the construction site

in the red box) is tilted to the left. In contrast, SPHP-NR pre-

erves the shape and reduces the perspective distortion, but the

onstruction site is now tilted slightly to the right ( Fig. 12 (c)). Us-

ng the global similarity constraint, the proposed method largely

liminates all these distortions, providing a pleasing stitching re-

ult, as is clearly shown in Fig. 12 (d). 
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Fig. 13. Distortion reduction comparison with the AANAP method. From top to bottom, the results are (a) APAP [5] , (b) AANAP [16] , and (c) our method. For better compar- 

ison, some details are highlighted. The red circle shows the distortion. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 14. The original images for global-based methods. Top: Ceiling ; Bottom: Temple . 
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3 The Temple images were acquired from the open dataset of Zaragoza et al. [5] . 
Fig. 13 shows a comparison of the proposed method with

AANAP [16] on distortion reduction. Fig. 13 (a) shows that APAP

achieves good alignment, but it suffers from shape and perspective

distortion problems, for example, in the stretched and tilted build-

ings at the right of the image. By linearizing the homography and

using the similarity transformation, AANAP provides an attractive

result in which the projective distortions have been largely miti-

gated ( Fig. 13 (b)). However, as shown in the red circle of the en-

larged view, the lines on the ground are slightly deformed. Our

method yields more appealing stitching results in this example

( Fig. 13 (c)). 

4.3. Comparisons with global-based methods 

In this section, the proposed method is compared with three

global-based methods: global homography (Baseline) [13] , ICE [38] ,

and SPHP [12] . For our method (called the global version), global

homography is adopted during the first alignment stage and jointly

estimated by point and line correspondences to pre-warp the

source images. 
Fig. 14 shows the two pairs of original images for stitching: Ceil-

ng and Temple . 3 The low-textured content of Ceiling results in the

etection of only a limited number of unevenly distributed key-

oints, which may degrade the warping model’s estimations. How-

ver, line correspondences are abundant, which can improve the

mage alignment. Temple provides rich point correspondences, but

he scene contains multiple distinct planes, which is a challenge

or the global-based methods. 

Figs. 15 and 16 show the results of the global-based meth-

ds on the Ceiling and Temple image pairs. As shown, due to the

odel deficiencies, the Baseline warp cannot provide satisfactory

titching results; there are numerous misalignments and projec-

ive distortions. The ICE and SPHP methods improve the stitching

erformance, especially in the aspect of the reduction of projec-

ive distortions. For instance, the door in Fig. 15 and the people

n Fig. 16 have few distortions, but the bricks of the ceiling in

he non-overlapping area in the ICE result ( Fig. 15 (b)) are slightly

tretched. In addition, alignment errors in these two pairs of im-

ges (the red circles in Figs. 15 and 16 ) remain obvious. In con-
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Fig. 15. Image stitching comparison on the Ceiling image. From top to bottom, the images are the results of (a) Baseline [13] , (b) ICE [38] , (c) SPHP [12] , (d) our method 

(global version). For better comparison, some details are highlighted. The red circles show alignment errors. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 16. Comparison of image stitching on Temple . From top to bottom, the results are (a) Baseline [13] , (b) ICE [38] , (c) SPHP [12] , and (d) our method (global version). 

For better comparison, some details are highlighted. The red circles show alignment errors. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 17. The original images for the comparison of local-based methods. From top to bottom, they are Church , Block , and Wall . 

Fig. 18. Comparison of image stitching on Church , Block , and Wall . From left to right, the images show the results of (a) CPW [10] , (b) APAP [5] , (c) SPHP + APAP [12] , (d) our 

method (local version). The details are highlighted to simplify the comparison. The red boxes show alignment errors or distortions, and the green boxes show satisfactory 

stitching. Enlarged views are displayed below each image stitching result. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

Table 4 

Quantitative evaluation on Ceiling . 

Methods Cor Err (p) 
mg Err (l) 

mg Err mg 

Baseline 0.755 3.200 2.059 2.452 

SPHP 0.631 2.876 1.989 2.292 

Proposed 0.200 1.343 0.695 0.921 

4

 

trast, the proposed method is more flexible and robust in handling

the alignment not only because of the line-guided warping esti-

mation but also because of the alignment constraints in the mesh-

based framework. With the similarity constraint, our method pro-

vides good stitching results with minimal distortions. 

Tables 4 and 5 contains a quantitative comparison of Ceiling and

Temple , showing that our method provides the results with the

fewest errors. On Ceiling , our method performs the best because

the line features play an important role in scenes without reliable

keypoint correspondences. On the Temple image, which has rich

and reliable keypoints, the role of the line feature may be reduced,

but it still helps to improve the alignment accuracy. 
p  
.4. Comparisons with local-based methods 

The global version works well in preserving the content and

erspective, but it is somewhat less robust when aligning im-
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Fig. 19. Stitching of multiple images on Apartments (3 images). From top to bottom, the results are (a) Autostitch [13] , (b) ICE [38] , and (c) our method. Some errors are 

highlighted by red boxes to simplify the comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 5 

Quantitative evaluation on Temple . 

Methods Cor Err (p) 
mg Err (l) 

mg Err mg 

Baseline 6.240 1.899 0.954 1.430 

SPHP 4.334 1.756 0.919 1.341 

Proposed 1.515 0.592 0.529 0.561 
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g  
ges taken with large views. For high DoFs and flexible local ho-

ographies, our method that uses local homography in the pre-

arping stage (called the local version) can handle the parallax is-

ue. Therefore, in this section, we compared it with three other

ocal-based methods: CPW [10] , APAP [5] , and SPHP + APAP [12] .

ig. 17 shows the original Church, Block , and Wall images for the

omparison experiments. 4 Some images have little texture, which

imits the extracted features. Moreover, the images ′ corresponding

iews vary greatly. 

The stitching results on these three pairs of images are pro-

ided in Fig. 18 . In terms of alignment accuracy, CPW and APAP

llow higher DoFs than does global homography, but they also

roduce misalignments in regions that lack point correspondences

the areas partially highlighted in red boxes). In addition, CPW and

PAP may cause local structure deformation in structural regions

hat lack keypoints. The red closeups clearly show that straight
4 The Church and Block images were acquired from the open dataset of Zhang 

t al. [3] . 

w  
ines are bent ( e.g. , the stair railing in Church , the building edge

n Block , and the wall edge in Wall ). Using the similarity trans-

ormation, SPHP+APAP reduces the projective distortions and pre-

erves the shape and perspective, mitigating the building distortion

n the non-overlapping regions in both Church and Block . In com-

arison, our method not only provides accurate alignment, which

enefits from the two-stage alignment scheme, but also preserves

mage structures and perspectives due to the line and similarity

onstraints. 

Table 6 shows the quantitative results of the compared meth-

ds. Our method consistently achieves better accuracy than CPW,

PAP and SPHP+APAP except for Err 
(p) 
mg in Church result. CPW

dopts feature alignment as a strong constraint; therefore, it pro-

ides a good quantitative result in Err 
(p) 
mg . However, its results are

nsatisfactory on other criteria on the Church image. Overall, our

ethod achieves the best quantitative results. 

.5. Stitching of multiple images 

Figs. 19 and 20 show the stitching results of multiple images

n the Apartments and Garden data, respectively. 5 Some distinct

rrors are highlighted in boxes. As can be seen, Autostitch and

CE result in some obvious misalignments because they use only

lobal homography for alignment, which is unsuitable for images

hose views differ by factors other than pure rotation. In contrast,
5 These images were acquired from the open dataset of Zaragoza et al. [5] 
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Fig. 20. Stitching of multiple images on Garden (5 images). From top to bottom, the results are (a) Autostitch [13] , (b) ICE [38] , and (c) our method. Some errors are 

highlighted in the closeups to simplify the comparison. 

Table 6 

Quantitative evaluation of local-based methods. 

Methods Church Block Wall 

Cor Err (p) 
mg Err (l) 

mg Err mg Cor Err (p) 
mg Err (l) 

mg Err mg Cor Err (p) 
mg Err (l) 

mg Err mg 

CPW 4.950 0.599 0.876 0.686 2.561 1.600 1.582 1.592 0.308 2.348 2.100 2.312 

APAP 6.485 1.319 1.261 1.300 3.013 2.719 1.710 2.263 0.252 3.490 2.178 3.302 

SPHP + APAP 4.281 1.310 1.280 1.301 2.849 2.668 1.651 2.208 0.198 3.498 2.249 3.318 

Proposed 3.090 0.630 0.515 0.594 1.880 1.550 0.627 1.133 0.081 2.248 0.478 1.993 
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our method largely improves the stitching performance because of

the flexible line-guided local homographies and mesh optimiza-

tion. Thus, the proposed method produces satisfactory stitching re-

sults that contain few misalignments and distortions. 

5. Conclusion 

This paper proposed a line-guided local warping for image stitch-

ing by imposing similarity constraint . Our method integrates multi-

ple constraints, including line features and global similarity con-

straints, into a two-stage image stitching framework that achieves

accurate alignment and mitigates distortions. The line features are

employed as an effective supplement to point features for align-

ment. Then, the line feature constraints (line matching and line

collinearity) are integrated into the mesh-based warping frame-

work, which further improves the alignment while preserving the

image structures. Additionally, the global similarity transformation

is combined with the projective warping to maintain the image

content and perspective. As shown by the results of performed

experiments, the proposed method achieves a good image stitch-
ng result that yields the fewest alignment errors and distortions

ompared to other methods. The proposed method depends on

ine detection and matching; thus, incomplete or broken line seg-

ents may influence its structure-preserving performance. In fu-

ure work, we would like to explore other complex structure con-

traints, such as contours [41,42] , to improve the image stitching

erformance, and explore the possibility of applying our warping

odel to other applications, such as video stabilization [43] . 
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