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In this paper, a novel fusion algorithm based on the adaptive dual-channel unit-linking pulse coupled
neural network (PCNN) for infrared and visible images fusion in nonsubsampled contourlet transform
(NSCT) domain is proposed. The flexible multi-resolution and directional expansion for images of NSCT
are associated with global coupling and pulse synchronization characteristic of dual-PCNN. Compared
with other dual-PCNN models, the proposed model possesses fewer parameters and is not difficult to
implement adaptive, which is more suitable for image fusion. Firstly, the source images were multi-scale
and multi-directional decomposed by NSCT. Then, to make dual-channel PCNN adaptive, the average
gradient of each pixel was presented as the linking strength, and the time matrix was presented to
determine the iteration number adaptively. In this fusion scheme, a novel sum modified-Laplacian of
low-frequency subband and a modified spatial frequency of high-frequency subband were input to
motivate the adaptive dual-channel unit-linking PCNN, respectively. Experimental results demonstrate
that the proposed algorithm can significantly improve image fusion performance, accomplish notable
target information and high contrast, simultaneously preserve rich details information, and excel other
typical current methods in both objective evaluation criteria and visual effect.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Image fusion is to synthesize information from the same scenes’
multiple images which come from different kinds of image sensors
or the same one that functions in diverse modes, to obtain a com-
posite image which is more suitable for further image processing
tasks. Compared with the source images, fused images which inte-
grate complementary and redundant information from multiple
images contain a ‘‘better’’ description of the scene than any of
the single source images [1,2]. Up to now, image fusion plays an
important part in many fields such as computer vision, medical
image, military, remote sensing and so on. The fusion of visible
and infrared images is one of the most useful cases.

Visible images obtained by spectral reflection have high resolu-
tion, good image quality and rich details of background, while they
cannot detect the objects in hidden or in low light and nighttime
conditions; infrared images acquired through infrared thermal
radiation are capable of showing the concealed objects of interest
in some poor environment, while they are insensitive to the
changes of the brightness in the scene which results in poor image
quality and lacking details about the scene. The fused image, con-
structed by the combination of features, can assimilate the advan-
tages of the visible and infrared images, improve detection and
recognizable localization of a target in the infrared image with
respect to its background in the visible image, and make it suitable
for subsequent processing tasks.
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During the last decade, the multi-scale transform based
methods and pulse couple neuron network (PCNN) based methods
have attracted more and more researchers’ attention and are
becoming the focus of study. Among the tools of multi-scale geo-
metrical analysis, nonsubsampled contourlet transform [3] (NSCT),
proposed by Da Cunha et al., is referred as the most ‘‘optimal’’
representation of two dimension (2D) image, and can take full
advantage of the geometric regularity of image intrinsic structures
and obtain the asymptotic optimal representation. Compared with
the contourlet transform [4] (CT), NSCT inherits the perfect
properties of CT and wavelet, such as the characteristics of
time–frequency localization, multidirection, and anisotropy, and
meanwhile possesses the shift-invariance which contourlet trans-
form lacks of, leading to better frequency selectivity and regularity
than contourlet transform and get rid of pseudo-Gibbs phenomena
along the edges to some extent. NSCT is a fully shift-invariant,
multi-scale and multi-direction expansion that has a fast imple-
mentation and has been used in image denosing and enhancement.
When the NSCT is introduced to the image fusion field, more
information for image fusion can be obtained and the impacts of
mis-registration on the fused results can also be reduced
effectively [5]. So, the NSCT is more suitable for image fusion.

Pulse coupled neural network (PCNN) is a visual cortex-inspired
neural network developed by Eckhorn et al. in 1990 and founded
on the experimental observations of synchronous pulse bursts in
cat and monkey visual cortex [6,7]. Because of its characteristics
of global coupling and pulse synchronization of neurons, PCNN
has attracted sufficient attention and been extensively used in
the field of image fusion. Although these fusion methods achieve
excellent results, they are complex and inefficient because they
cannot deal with different kinds of images. Most PCNN models
have only one stimulus and one PCNN cannot deal with the whole
process of image fusion, so image fusion generally requires multi-
ple PCNNs. As a result, the standard PCNN structurally limits its
application in image fusion to some extent.

To make PCNN more appropriate for image fusion, many
researchers improved the original PCNN model to the dual-channel
PCNN model, which is greatly suitable for image fusion and can
solve the problem of complication and inefficiency of PCNN-based
methods very well. Wang et al. [8–10] pioneered a novel dual-
channel PCNN, which overcomes the defects mentioned above,
and successfully applied in medical and multi-focus image fusion.
In this dual-PCNN model, all source images are input into the same
PCNN at the same time, and these data is weighted and mixed in
the information fusion pool according to the weighting coeffi-
cients, and the output of dual-PCNN is the fused image, which
makes the dual-PCNN fusion model simple and fast. Literature
[11–14] improved and developed the dual-channel PCNN model.

These methods accomplish excellent performance, but Wang’s
model does not consider the linking channel for the input image
which may result in false fired pulses. This model cannot put out
the fusion image directly, and it must employ the time matrix
and linearly transformation, which makes it inconvenient enough.
Therefore, Chai et al. [15] proposed another dual-channel PCNN
model. Unlike Wang’s model, two source images are input into
the same PCNN at the same time, and select the big one in the
information fusion pool for the subsequent processing. What is
more, the algorithm introduces the lifting stationary wavelet trans-
form (LSWT) and the image features to fuse images. But the limita-
tions of LSWT lead to that the 2D and higher-dimensional
information of images could not be effectively depicted. So
El-taweel G. S. [16] applied nonsubsampled contourlet transform
to replace LSWT to fuse multi-focus images, medical images and
infrared and visible images, and achieve good performance. How-
ever, by analyzing the Chai’s dual-channel PCNN model, it is found
that the Chai’s model also has too many uncertain parameters,
which are difficult to set and lack automation. Li et al. [17] utilized
particle swarm optimization (PSO) to set the parameters adaptive,
but it requires large number of iterations. And there hardly any
work based on dual-channel PCNN algorithm for the fusion of
visible and infrared images.

To make up for these defects and obtain better fusion perfor-
mance, an improved simplified adaptive dual-channel PCNN in
NSCT domain for infrared and visible images fusion is proposed
in this paper based on Chai’s model. The proposed model intro-
duces the unit-linking PCNN, which decreases the number of
parameters a lot and achieves satisfactory performance of image
processing. For the sake of implementing the dual-channel PCNN
model adaptive, the model utilizes the average gradient of each
pixel in images as the linking strength, and the time matrix to
determine the iteration times adaptively. After decomposing the
source images by NSCT, we use the new simplified dual-channel
unit-linking PCNN, which not only inherits the properties of the
global coupling and pulse synchronization of the PCNN neurons
but also overcomes the above-mentioned problems and the limits
of the original model in the image fusion, to select the coefficients
of the fused image. The concrete selection principles of the low-
frequency sub-band images and the high-frequency directional
sub-band images are discussed in detail in the paper, respectively.
Experimental results show the proposed method does well in the
fusion of infrared and visible images and can preserve not only
the spectral information of the visible image, but also the thermal
target information of the infrared image, and the fused result has
high contrast, remarkable target and rich background information.

The remaining sections of this paper are organized as follows.
Section 2 reviews the theory of the NSCT in brief. Section 3 pre-
sents the unit-linking PCNN briefly, and then the novel simplified
dual-channel unit-linking PCNN is introduced in detail. Section 4
describes the image fusion algorithm using NSCT and the new
dual-channel PCNN, and the exhaustive fusion steps are described.
Experimental results and discussion are given in Section 5. Some
conclusions are summarized in Section 6.
2. Nonsubsampled contourlet transform

Nonsubsampled contourlet transform is a multi-resolution,
multi-directional expansion for images derived from contourlet
transform. As a new two-dimension image analysis tool, NSCT
cannot only deal with the problem that higher-dimensional singu-
larities cannot be effectively represented by the wavelets, but can
also overcome the drawbacks of contourlet transform that does not
own the property of shift-invariance.

Differently from contourlet transform, NSCT employs nonsub-
sampled pyramid (NSP) decomposition and nonsubsampled direc-
tional filter banks (NSDFB). The nonsubsampled pyramid structure
is realized by using nonsubsampled 2D filter banks, which can
reach the subband decomposition structure similar to Laplacian
pyramid in CT. The NSDFB is achieved by switching off the
down-samplers/up-samplers in the DFB tree structure and
up-sampling the filters accordingly instead. This algorithm is
conceptually similar to the nonsubsampled wavelet transform
computed with the àtrous algorithm [5]. As a result, NSCT gains
shift-invariant except for the properties of multi-scale, multi-
direction and localization, which can effectively represent the
image information of edge and contour and get rid of the frequency
aliasing of the CT so as to overcome the pseudo-Gibbs phenomena
around singularities in image fusion, which leads to better
frequency selectivity and regularity than contourlet transform.
Because of the shift-invariance, NSCT can greatly reduce the effects
of mis-registration on the fused results, and the size of different
subbands decomposed by NSCT is the same to the original images,
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which make it easy to find the correspondence between different
subbands and is beneficial for designing fusion rules.

The NSCT construction can be divided into two parts like CT: (1)
a nonsubsampled pyramid structure which ensures the multi-scale
property and (2) a nonsubsampled directional filter bank structure
that provides directionality. The image is first decomposed by NSP,
and one low-frequency image and one high-frequency image can
be produced at each NSP decomposition level. Subsequent NSP
decomposition is carried out to decompose the low-frequency
component iteratively to capture the singularities in the image. If
the level of decomposition is k, so NSP can generate k + 1 subbands,
which consist of one low-pass subband and k high-pass subbands,
whose sizes are as same as the source images. And then the high-
frequency subbands from NSP at each scale are decomposed by
NSDFB with l stages, and this can produce 2l directional subbands
with the same size as the source image. Through this step, NSCT
can extract more precise directional details information which
can benefit image fusion. The NSCT construction is illustrated in
Fig. 1. Fig. 1(a) is a schematic diagram of two stages decomposition
frameworks of NSCT, and Fig. 1(b) denotes the structure consists of
a bank of filters which splits the 2D frequency plane into the
subbands.
3. Adaptive dual-channel unit-linking pulse couple neuron
network

In this section, a brief review of the original unit-linking PCNN
is given, and then the novel simplified dual-PCNN model based on
unit-linking PCNN which can put out the fusion result directly is
proposed. Compared with the original dual-channel PCNN model,
it improves the linking input and decreases the numbers of param-
eters, and can adaptively choose the value of the parameters, such
as linking strength and iteration number.

3.1. Unit-linking PCNN model

Known as third-generation artificial neural network, the
pulse-coupled neural network, which has important biological
backgrounds, has incomparable superiority over other current
methods when applied in image processing because of the charac-
teristics of global coupling and pulse synchronization of neurons.
In the last decade, a wide variety of fusion methods based on PCNN
has been proposed [7,18]. But the performance of image fusion
methods using PCNN is limited due to its complexities, and some
inherent drawbacks still cannot be ignored. The original PCNN
model has so many parameters which are sometimes difficult to
assign. At present, the parameters are commonly determined
through the numerous experiments and experience. And usually,
these parameters are only suitable for some certain situation. So
a series of modified and simplified PCNN models have been
(a)

Fig. 1. Decomposition frameworks of nonsampled contourlet transform. (a) Two stages d
with the proposed structure.
proposed including the intersecting cortical model, the spiking
cortical model [19] and the unit-linking PCNN model [2].

Among them, the unit-linking PCNN (UL-PCNN) proposed by Gu
et al. [20,21], a simplified model of PCNN, has attracted many
researchers’ attention by virtue of its simple assignment of param-
eters and better performance for image processing. UL-PCNN
improves the linking input, and decreases the number of parame-
ters a lot, and also retains main characteristics of PCNN.

Like original PCNN model, UL-PCNN is a feedback network and
each neuron in UL-PCNN model consists of three parts: the recep-
tive field, modulation field and pulse generator. The UL-PCNN
model is shown in Fig. 2.

As shown in Fig. 2, the neuron receives the input signals from
other neurons and external stimulus S through the receptive field.
In general, the signals from other neurons are pulses, and the sig-
nals from external stimulus are often the normalized gray level of
image pixels. Then, the inputs are divided into two channels: feed-
ing input F and linking input L. The difference between these two
channels is that the feeding connection has a slower response time
constant than that of the linking connection. In the modulation
field, internal activation element U combines the feeding input
with the linking input. It firstly adds a constant positive bias to
the L firstly and then multiplies L by F, and the bias is taken to
be unity. b is the linking strength. The internal activity U is the
result of modulation and is inputted to the pulse generator. The
value of internal activity element is compared with a dynamic
threshold h that gradually decreases at iteration. The internal activ-
ity element accumulates the signals until it surpasses the dynamic
threshold and then fires the output element, and the dynamic
threshold increases simultaneously strongly. The output of the
neuron Y is then iteratively fed back to the linking input with a
delay of one iteration. The output of each neuron contains two
states, namely firing and non-firing. The mathematical model of
the UL-PCNN is described as follows:

FijðnÞ ¼ SijðnÞ ð1Þ

LijðnÞ ¼
1 if

X
ðK;IÞ2Nði;jÞ

Yklðn� 1Þ > 0

0 otherwise

8<
: ð2Þ

UijðnÞ ¼ FijðnÞð1þ bLijðnÞÞ ð3Þ

YijðnÞ ¼
1 if Ui;jðnÞ > hijðn� 1Þ
0 otherwise

�
ð4Þ

hijðnÞ ¼ expð�ahÞhijðn� 1Þ þ VhYijðnÞ ð5Þ

where the indexes (i ,j) refer to the pixel location in the image or the
neuron location in the UL-PCNN, n denotes the current iteration.
N(i, j) refers to the neighbor field of neuron (i, j). And ah indicates
(b)

ecomposition frameworks of NSCT and (b) idealized frequency partitioning obtained



Fig. 2. Unit-linking PCNN model.

Fig. 3. The model of a dual-channel unit-linking PCNN.
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the rate of decay of the threshold in the iterative process, Vh decides
the threshold value of fired neuron.

Differently from common simplified PCNN model, the UL-PCNN
improves the linking channel that to each neuron, the value of
channel Lij will be 1 as long as there is a fired neuron in its neigh-
borhood (not including the center neuron itself), otherwise the
value of Lij will be 0. In other words, a fired neuron will fire any
unfired neurons with similar input in its neighborhood. So it makes
the linking inputs uniform so that the impulse expanding behav-
iors of networks consisting of unit-linking neurons are clear and
easy to analyze and control.

In traditional UL-PCNN, the threshold function is exponentially
decayed and periodically changed. Although it accords with the
non-linear characteristics of the response of the human visual
system to the brightness intensity, it is not a good mode for
controlling the impulse and thus easily leads to computation
complexity. What is more, exponential decay causes partial
treatment between high-intensity and low-intensity pixels that
the threshold decays fast at the high intensity and slowly at the
low intensity, which makes the varied gray range process
differently [22].

Therefore, in order to get over the above drawbacks and make it
more suitable for image fusion, the traditional exponential decay
mechanism of the threshold is replaced by a kind of simple and
rational mode that threshold function hij is dropped off linearly
with time n. The expressions of h is described as follows:

hijðnÞ ¼ hijðn� 1Þ � Dþ VhYijðnÞ ð6Þ

where D is a positive constant for controlling the decline extent of
the dynamic threshold. And D should be enough small to make the
threshold attenuate slowly in order to partition those pixels with
the similar intensity at the different fire time. The larger D will
results in losing some image information. And Vh is usually set as
a relatively huge value to guarantee that the firing times of each
neuron is not more than once at most.

When unit-linking PCNN is used for image processing, it is a sin-
gle-layer two-dimensional array of laterally linked neurons. The
number of neurons in PCNN is equal to that of pixels in the input
image. The relation between image pixels and the network neurons
is a one-to-one correspondence, and the gray value of each pixel is
often input to the F channel as external stimulus of each neuron.
Meanwhile, each neuron is connected with neurons in its neigh-
boring field by the L channel.

3.2. Model of dual-channel unit-linking PCNN

Undoubtedly, there requires more than one PCNN model for
image fusion using unit-linking PCNN, which makes the method
complex and time-consuming. Obviously, only one stimulus for
each neuron is an obstacle for multiple-image fusion using PCNN.

Due to these defects of single-channel PCNN for image fusion,
inspired by Chai’s model, there proposes a novel simplified dual-
channel PCNN model based on unit-linking PCNN, which lessens
the parameters a lot and is easy to make it adaptive, as shown in
Fig 3.

Like the original UL-PCNN, each simplified dual-channel PCNN
neuron also consists of three parts: the receptive field, information
fusion part and pulse generator. Two kinds of inputs including
external stimulus and surrounding neuron stimulus are received
in the receptive field. Information fusion part is the place where
all images are fused, and can be utilized to restore the fused image.
The pulse generator is to generate output pulses. In simplified
dual-channel PCNN model, both stimuli can be input into the
model at the same time, and the output of dual-channel PCNN is
the fused image. The mathematical equations of dual-channel
unit-linking PCNN can be described as follows:

F1
ijðnÞ ¼ S1

ij ð7Þ

F2
ijðnÞ ¼ S2

ij ð8Þ

LijðnÞ ¼
1 if

X
ðK;IÞ2Nði;jÞ

Yklðn� 1Þ > 0

0 otherwise

8<
: ð9Þ

UijðnÞ ¼max F1
ijðnÞð1þ b1

ijLijðnÞÞ; F2
ijðnÞð1þ b2

ijLijðnÞÞ
n o

ð10Þ

YijðnÞ ¼
1 if Ui;jðnÞ > hijðn� 1Þ
0 otherwise

�
ð11Þ

hijðnÞ ¼ hijðn� 1Þ � Dþ VhYijðnÞ ð12Þ

where S1
ij and S2

ij denote the corresponding external stimulus of two
images such as the normalized gray level of image pixels at (i, j)
position, F1

ij and F2
ij stand for two symmetrical feed inputs, is the

linking input. And b1
ij and b2

ij are the linking strength. Uij is
the internal state of the neuron. According to Uij, we can obtain
the decision map which can decide the fused image. Other param-
eters of the dual-channel PCNN model are the same as parameters
in the original UL-PCNN model.

A remarkable characteristic of dual-channel PCNN is that two
images can be input into the model at the same time, and the out-
put of dual-channel PCNN is the fused image, which is simple and
fast for image fusion. And the new dual-channel PCNN model
inherits the properties of original PCNN model. The dual-channel
PCNN also possesses global coupling and pulse synchronization
characteristics, which take full advantage of local image informa-
tion and benefit image fusion.

3.3. Adaptive parameters setting in dual-channel PCNN

In traditional PCNN based image fusion, parameters mainly
depend on the large number of experiments or experience. And a
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set of parameters which achieve good performance in certain situ-
ation may be unsuitable for other applications. To implement the
automation of PCNN parameters, Li et al. employed PSO to set
the parameters adaptive, but it requires large number of iterations
and may be complex. In literature [15], Y. Chai utilized orientation
information as the linking strength, but the other parameters were
set by manually. So Chai’s model just implements part of the auto-
mation. In this paper, we apply the unit-linking PCNN model and
improve it to dual-channel PCNN model, which reduces parame-
ters a lot. In dual-channel PCNN, the number of parameters requir-
ing setting is just four in all, namely b;D;Vh and n. Among them, D
and Vh are easy to determine as described previously. With regard
to the step D , we can set it as 0.01 to ensure that the decayed
speed of the dynamic threshold is moderate and acceptable. In
order to limit the firing times of each neuron to no more than
one, the parameter Vh can be simply assigned by a comparatively
larger value such as 20. And taking account of the parameters b
and n, which are significant for image fusion, the average gradient
of each pixel in images is employed to determine the linking
strength b adaptively, and the time matrix of the images is
presented to determine the iteration number n adaptively.

The parameter b, namely linking strength, reflects the pixel
characteristics and can adjust the weighting of the linking channel
in the internal activity, so it plays an important role in the pro-
posed image fusion method. Usually, most literatures assign the
same constant to the linking strength of each neuron through
experiments or experiences, such as 0.2 [23]. This setting manner
can sharply simplify the problem in basic PCNN model. However,
according to the analysis of literature [24], it does not accord with
the actuality of images, because the linking strength of each
neuron in PCNN model should be relevant to the features of the
corresponding pixels of the images. And this shortcoming is also
a big limit to the automatic process. So many researchers choose
the clarity of each pixel, which denotes the notable features of
images, to adjust the linking strength, such as spatial frequency
[25], orientation information [15], standard deviation [26] etc. In
this paper, considering that the gradient of each pixel is a notable
feature of the local neighborhood region and reflects the edges of
images, so we utilize the average gradient to determine the linking
strength. The average gradient of image represents the change of
the gray value, and is one of the key criterions to reflect the clarity
of image, and what is more, it can denote the details of edge,
texture. The mathematical expression of average gradient is as
follows:

�gði; jÞ ¼ 1
9

X1

m¼�1

X1

n¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½g1ðiþm; jþ nÞ þ g2ðiþm; jþ nÞ�=2

q
ð13Þ

g1ði; jÞ ¼ ½Iði; jÞ � Iðiþ 1; jÞ�2 ð14Þ

g2ði; jÞ ¼ ½Iði; jÞ � Iði; jþ 1Þ�2 ð15Þ

where gði; jÞ is the average gradient at position (i, j) in the 3 � 3 local
region, g1ði; jÞ and g2ði; jÞ illustrate the change of the gray value in
the horizontal and vertical direction respectively.

In general, the value of b is between 0 and 1. Therefore, we
exploit the sigmoid function to normalize the average gradient.
Suppose that bði; jÞ denotes the linking strength at (i, j) neuron,
so the linking strength is defined as follows:

bij ¼
1

1þ expð�gði; jÞÞ ð16Þ

From formula (16), we can see that b reflects the change of gray
value in the image window. The larger the average gradient is, the
better the clarity of the local region is, and the larger the value of b
is, so the earlier the neuron fires. The linking strength can adaptive
adjust according to the average gradient, which makes the PCNN
model preserve the image details effectively and improve the
performance of image fusion.

Generally speaking, it is hard to set the iteration number n in
PCNN image processing. In most literatures, the iteration number
n is decided by experiments or experience. In Das et al.’s [23]
paper, the iteration number n of PCNN is set as 200 times. It is
known to all, if n is too large, it will be time-consuming, and if n
is set to be too small, the synchronous impulse characteristic of
PCNN will not be taken full advantage of to get optimal image pro-
cessing effect. And those methods whose iteration number n is set
as a fixed constant are only applicable to certain specific occasions.

In order to set the iteration number n properly, enlightened by
literature [27], we adopt the time matrix T whose size is equivalent
to the external input S to determine the iteration number n
adaptively. T is defined as follows:

TijðnÞ ¼
n; if YijðnÞ ¼ 1 for the first time
Tijðn� 1Þ; otherwise

�
ð17Þ

where Tij denotes each neuron’s first firing time. The time matrix is
a mapping from the spatial image information to the time informa-
tion, providing a genuine storage of the information about the firing
time of each neuron. It is necessary to explain and note three points
about time matrix: (1) Tij is set to be zero if the neuron has never
fired; (2) Tij is set to be n if the neuron fires for the first time at
the time of n; (3) Tij remains invariable if the neuron has fired.
The iteration goes on until all neurons have been fired, that is to
say, each element value of T is nonzero. Moreover, in the time
matrix T, those pixels whose image intensity values are similar in
the source image often share the same or similar firing time. Thus
by using time matrix, the dual-channel unit-linking PCNN model
can not only describe time information of each neuron, but also pre-
serve space information including image gray distributing, which
will benefit further processing much more.
4. Fusion method

In this section, the proposed fusion scheme will be discussed in
detail. Firstly, NSCT has been introduced into the fusion algorithm
in this paper. After the multi-scale and multi-direction decomposi-
tions of the source image, the low-frequency sub-image denotes
the approximate component, which represents the main informa-
tion of the source image, whereas a series of high-frequency
sub-images that reflect the details components, contains the edge
details information of the source image from different directions
and scales. So, the fusion rules for the subband images decomposed
by NSCT are very important for the quality of fusion.

At present, fusion rules that average or weighted average are
commonly used in low-frequency domain, and max absolute is
often used in high-frequency domain. For the fusion of infrared
and visible images, these methods may lose part of spectrum
information and details of source images, and reduce the contrast.
Considering the global coupling and pulse synchronization charac-
teristics of PCNN, we take the dual-channel unit-linking PCNN,
which make full use of local image information and can effectively
extraction the details of image, to make an intelligent decision on
the selection of high- and low-frequency NSCT coefficients.

In most of the multi-scale analysis and PCNN based algorithms,
the value of single pixel in multi-scale decomposition domain is
directly used to motivate one neuron. In fact, human’s visual
system in most time is highly sensitive to edges, directional
features, etc., yet insensitive to real luminance at independent
positions. So a pure use of single pixel is not enough. It will be
more reasonable to exploit features, rather than the value of pixels,
to motivate PCNN neurons. In this paper, we utilize a novel
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sum-modified-Laplacian [28] (NSML), which can represent the
edge features of the low-frequency sub-images in NSCT domain,
and a modified spatial frequency [28], which stands for gradient
energy of the high-frequency sub-images in NSCT domain, to moti-
vate the dual-channel PCNN neurons. The detailed fusion rules can
be described below.

4.1. Lowpass subband fusion rule

In this paper, we use a novel sum-modified-Laplacian (NSML),
which can reflect the edge details of the lowpass subband images,
to motivate the PCNN neurons. Supposed that C(i, j) denotes the
coefficients of the low-frequency subband image at (i, j) position,
the modified Laplacian energy (ML) and NSML are described as
follows:

MLði; jÞ ¼ j2Cði; jÞ � Cði� step;jÞ � Cðiþ step;jÞj
þj2Cði; jÞ � Cði; j� stepÞ � Cði; jþ stepÞj

ð18Þ

NSMLkði; jÞ ¼
X

a

X
b

W1ða; bÞ½MLðiþ a; jþ bÞ�2 ð19Þ

where ‘step’ is the variable spacing between the coefficients and is
equal to 1 in this paper, a and b denotes the size of the widow for
computing the NSML, usually 3 � 3, 5 � 5 or 7 � 7, and 3 � 3 in this
paper. And W1 is a weighted template, which is given as:

W1ða; bÞ ¼
1

15

1 2 1
2 3 2
1 2 1

2
64

3
75 ð20Þ
4.2. Highpass subband fusion rule

For the high-frequency sub-images, we introduce a modified
spatial frequency (MSF) which used as the gradient features of
images to motivate dual-channel PCNN and generate pulse of neu-
rons. Spatial frequency (SF) is measured by using slipping window
of coefficients in subbands. It measures the entire activity in the
window-based coefficients via the gradient energy in rows and col-
umns. In this paper, the spatial frequency is extended, in addition
to the calculation of changes in horizontal and vertical directions,
the frequency changes of the two diagonal directions are increased.
And so the image information is reflected more comprehensively.

We take Cl;kði; jÞ denotes the coefficient located at (i, j) in the
k-th directional subband at the l-th decomposition level of high-
frequency sub-images, the modified spatial frequency (MSF) is
defined as:

MSF ¼ 1
MN

XM

i¼1

XN

j¼1

ðRFþ CFþMDFþ SDFÞ ð21Þ

with

RF ¼ ½Cl;kði; jÞ � Cl;kði; j� 1Þ�2 ð22Þ

CF ¼ ½Cl;kði; jÞ � Cl;kði� 1; jÞ�2 ð23Þ

MDF ¼ ½Cl;kði; jÞ � Cl;kði� 1; j� 1Þ�2=
ffiffiffi
2
p

ð24Þ

SDF ¼ ½Cl;kði; jÞ � Cl;kði� 1; jþ 1Þ�2=
ffiffiffi
2
p

ð25Þ

where RF, CF, MDF and SDF, express the row frequency, the column
frequency, the main angular frequency and the auxiliary diagonal
frequency respectively. And M and N denote the size of the window
for computing MSF. In this paper, we take 3 � 3 neighbor region.
4.3. Fusion step

The schematic diagram of the proposed fusion scheme is shown
in Fig. 4. Before fusion, all source images must be spatially regis-
tered. The detailed fusion process consists of the following four
steps:

(1) Perform the NSCT on the registered source infrared and vis-
ible images, respectively, and obtain one lowpass subband
image and a series of highpass directional subband images.

(2) The coefficients of the sub-images from infrared and visible
images are all normalized between 0 and 1. And calculate
NSML as described in formula (18)–(20) on lowpass subband
and MSF as described in formula (21)–(25) on highpass
subband. Take them respectively as the feeding input to
stimulate PCNN.

(3) Select fusion NSCT coefficients for the low-frequency
subband coefficients and the high-frequency subband
coefficients via dual-channel unit-linking PCNN. The fusion
process can be described below:

a. Initialize Uijð0Þ ¼ Yijð0Þ ¼ Tijð0Þ ¼ 0; hijð0Þ ¼ 1 meanwhile,
each neuron does not fire. The mode of setting hijð0Þ above
is to make neurons be activated as soon as possible, which
can prevent unnecessary ‘‘void’’ iterations.

b. Take the value of average gradient of each pixel as the
linking strength, according to the formula (16).

c. Take the NSML of low-frequency sub-images and MSF of
high-frequency sub-images, as the external stimulus to
motivate the dual-channel PCNN neurons, respectively.
And then compute UijðnÞ; hijðnÞ;YijðnÞ; TijðnÞ according to
formula (7)–(12) and (17).

d. Implement step (c) iteratively until all neurons have been
activated, namely each element in T is nonzero. The fused
coefficients can be selected as follows:

CFði; jÞ ¼
CIði; jÞ if UijðNÞ ¼ UI

ijðNÞ
CV ði; jÞ if UijðNÞ ¼ UV

ij ðNÞ

(
ð26Þ

with

UI
ijðNÞ ¼ FI

ijðNÞð1þ bI
ijLijðNÞÞ ð27Þ

UV
ij ðNÞ ¼ FV

ij ðNÞð1þ bV
ij LijðNÞÞ ð28Þ

where CF(i, j), CI(i, j) and CV(i, j) denote the coefficients of the fused
image, the infrared image and the visible image, respectively. And
UI

ijðNÞ;U
V
ij ðNÞ stand for the internal state of the neuron of infrared

and visible image, respectively. N denotes the total fire times.
(4) Reconstruct the fused image by using an inverse NSCT.

5. Experimental results and analyses

To demonstrate effectiveness of the proposed fusion method,
some experiments have been performed. In this section, we test
the proposed algorithm through two typical groups of infrared
and visible images.

5.1. Experimental introduction

For comparison purposes, the proposed algorithm is assessed
and compared with other three current fusion methods: the DWT
method, the NSCT method and the NSCT–PCNN method [15]. The
former two methods take the absolute maximum choosing rule
for high-frequency coefficients and averaging combination rule
for low-frequency coefficients. As for NSCT–PCNN method, the
averaging scheme and the typical PCNN-based scheme fusion rule
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Fig. 4. The schematic diagram of the proposed fusion scheme.
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are used to fuse the lowpass subband coefficients and the highpass
subband coefficients in NSCT domain respectively. And all multi-
scale transform take 3 layers decomposition except NSCT, other
parameters are as follows: DWT takes ‘db2’; NSCT takes ‘‘9/7’’
and ‘‘pkva’’, together with a decomposition level of 4, and the num-
ber of direction from coarser to finer scale is set to be [0,2,3,4],
respectively. Parameters of the PCNN used in NSCT–PCNN method
are set as: aL = 0.06931, ah = 0.2, VL = 1, Vh = 20, h = 0.2, N = 200, and
linking weight W = [0.707,1,0.707;1,0,1;0.707,1,0.707].

For the purpose of better evaluating the effect of the fused
images, besides visual observation, this paper has adopted the
objective evaluation to evaluate results of all kinds of fusion meth-
ods objectively. We adopt five objective metrics: information
entropy (IE), mutual information (MI), standard deviation (SD),
QE and QAB/F [29]. IE quantifies the richness of information in the
fused image. The larger the IE value is, the more abundant the
information amount of the fusion image is. MI essentially com-
putes how much information from source images is transferred
to the fused image. With the increase of the value of mutual infor-
mation, fused image can get richer information from the source
image. The SD shows the statistical distribution of fused image
and describes the contrast of the fused image. The bigger the SD
is, the more dispersed the distribution of gray level in image is,
and the greater the contrast is, the better the visualization of the
fused image is. QE uses correlation, luminance distortion and con-
trast distortion to measure the fused images. The higher the QE is,
the more the saliency information of source images is contained in
the fused image. QAB/F computes and measures the amount of edge
information transferred from the source images to the fused
images using a Sobel edge detector to calculate strength and orien-
tation information at each pixel in both source and the fused
images. The larger the QAB/F is, the more edge information the fused
image preserves, and the better the performance of fusion is.

5.2. Performance evaluation

The first experiment is performed on the ‘UN Camp’ infrared
and visible images which have been registered perfectly. Fig. 5
illustrates the source images and the fusion results obtained by
the above different methods. Fig. 5(a) and (b) are visible light
image and infrared image which obtained in the same scene. And
fusion results using DWT, NSCT, NSCT–PCNN and our proposed
method are displayed in Fig. 5(c)–(f).

From Fig. 5(a) and (b), we can see that the pedestrian in infrared
image is in clearly sight, and infrared image is favorable for the
recognition of the interesting targets, whereas the background
information in infrared image is very poor and the scene about
pedestrian is a little heavily blurred, e.g., it is difficult to recognize
the shrubs and fences. And in the visible image, it is nearly impos-
sible to distinguish the pedestrian owing to the dim light and the
shelter of trees, but it has rich background information and details
of edges texture, and is clearly to identify the roads, bushes, fences
etc.

As can be seen from Fig. 5(c)–(f), four methods successfully fuse
the infrared and visible images, and all the fused images contain
the target information and background information. However, we
can find that the fused result using DWT has low contrast and loses
many details. The target of pedestrian is not prominent, and details
of roads, bushes etc. are blurred. Evidently, many artifacts are
introduced in the fused image because of the lack of shift-
invariance which causes pseudo-Gibbs phenomena. Yet the NSCT
based and NSCT–PCNN based methods achieve a better perfor-
mance than DWT-based method. Due to the shift-invariant of
NSCT, the pseudo-Gibbs phenomenon has been well eliminated
and the fused images are clearer and more natural than the DWT
fused results. It is proven that shift-invariant methods can over-
come the pseudo-Gibbs phenomena successfully and improve the
quality of the fused image around the edges. Furthermore, target
information is more prominent and background information such
as road, shrubs is much abundant compared with the DWT-based
method. But we can see that these two methods still have some
defects. The fusion results lose much spectral information, such
as the trees of bottom left and bottom right in the fused images.
Obviously, the proposed method provides best visual effects.
Almost all the useful information of the source images has been
transferred to the fused image, and meantime, fewer artifacts are
introduced during the fusion process. The proposed method not
only obtains the higher contrast and highlights the target of pedes-
trian, but also possesses rich spectral information and preserves
the edges and detailed information well, especially the trees in
the bottom left of fused image which are injected much more
texture information from visible image.

Table 1 shows evaluation results of four methods in Fig. 5. The
IE of the fused image obtained by the proposed method is maxi-
mum, which means that the fused image contains the largest
amount of information and has relatively better fusion result than
others. The MI achieves the best result of all, which illustrates that
the fused image based on the proposed method extracts more
information from the original images. And the SD of the fused
image by our method is maximum, which represents that the fused
image has the best contrast and the notable target. What is more,
the QE of the proposed method gains the maximum, and the QAB/F



 (a) Visible image  (b) Infrared image (c) DWT-based

 (d) NSCT-based  (e) NSCT-PCNN based (f) The proposed method

Fig. 5. Fusion results of ‘‘UN Camp’’ images; (a) source visible image; (b) source infrared image; (c)–(f) fusion results of DWT-based, NSCT-based, NSCT–PCNN based and the
proposed method.

Table 1
Evaluation results of four methods for ‘‘UN Camp’’.

Methods IE MI SD QE QAB/F

DWT 6.4646 1.4691 25.4912 0.1492 0.3966
NSCT 6.5536 1.5246 27.0326 0.2000 0.4591
NSCT–PCNN 6.5269 1.5338 26.5558 0.2052 0.4464
Proposed 6.9434 1.7881 33.5729 0.2127 0.4464
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of the proposed method acquires the second maximum, which
denotes that the method in our paper extracts more edge informa-
tion from source images and preserves the detailed information
effectively. The objective evaluation agrees with the visual
observation.

The second experiment is performed on the ‘tank’ infrared and
visible images. The source images and fused results are displayed
in Fig. 6. In Fig. 6, (a) and (b) are visible image and infrared image.
And Fig. 6(c)–(f) are the results of four fusion methods. From the
Fig. 6(a) and (b), the tank in Fig. 6(a) is almost hard to recognize,
while the background such as grass, trees can be observed clearly.
(a) Visible image (b) Infrare

 (d) NSCT-based  (e) NSCT-PCNN

Fig. 6. Fusion results of ‘‘Tank’’ images; (a) source visible image; (b) source infrared im
proposed method.
And the infrared image concerning the same scene in Fig. 6(b) is
easy to identify the tank, but the background is very poor.

From Fig. 6(c)–(f), four methods successfully synthesize the tar-
get information of the tank in the infrared image and the back-
ground information in the visible image, and reach good fusion
performance. But the contrast of the fused image based on DWT
is relatively low, and the DWT-based result loses much infrared
information such as the tail and wheels of the tank and spectral
information in the visible image such as trees. What is worse, the
fused image is troubled by the pseudo-Gibbs phenomena, espe-
cially at the wheels of tank. While the methods of NSCT-based
and NSCT–PCNN based improve the fusion effect greatly. They
remove the pseudo-Gibbs phenomena, and achieve high contrast.
Regrettably these two methods cannot fully extract the details
from the source images. For instance, the fusion of the tail of tank
is not sufficient, and the texture of trees is not abundant. The pro-
posed method is evidently better than other methods mentioned
above. It fully synthesizes the infrared and visible images, high-
lights the target information of tank. The proposed method
d image (c) DWT-based

 based (f) The proposed method

age; (c)–(f) fusion results of DWT-based, NSCT-based, NSCT–PCNN based and the



Table 2
Evaluation results of four methods for ‘‘Tank’’.

Methods IE MI SD QE QAB/F

DWT 6.9422 2.4997 31.9431 0.3212 0.5421
NSCT 7.0257 2.5335 33.7976 0.4193 0.6380
NSCT–PCNN 7.0076 2.5341 33.3793 0.4166 0.5985
Proposed 7.3777 3.6892 41.6931 0.5090 0.6528
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extracts the trees, tank etc. better and preserves the useful infor-
mation better than other methods. Meantime, fewer artifacts are
introduced during the fusion process.

In comparison, objective criteria used to compare the fusion
results are listed in Table 2. These five objective criteria receive
the maximum compared with the other three methods, which
proves that the fused image of the proposed method contains
abundant image information, has a high contrast, preserves more
image features and is strongly correlated with the source images.

As can be seen from these two experiments, the objective eval-
uation results coincide with the visual effect very well. From what
has been discussed above, it is can be concluded that the proposed
method does well in the fusion of infrared and visible images and
outperforms the DWT, NSCT, and NSCT–PCNN fusion algorithms,
whether in visual observation or objective evaluation criterion.

6. Conclusions

In this paper, according to original PCNN, a novel adaptive dual-
channel unit-linking PCNN for the fusion of infrared and visible
images is proposed in the NSCT domain. Compared with the
dual-channel PCNN models proposed in [8] and [15], our proposed
dual-channel PCNN model is devised to be more simple and adap-
tive, which possesses much fewer parameters and is suitable for
image fusion, and it can put out the fused image directly. To make
dual-channel unit-linking PCNN adaptive, we take the average gra-
dient of each pixel in images as the linking strength, and the time
matrix to determine the iteration number adaptively. In the pro-
posed algorithm, a novel sum-modified-Laplacian, which stands
for edge features in low frequency sub-images in NSCT domain,
is used to motivate the adaptive dual-channel unit-liking PCNN
neurons. For the high frequency sub-images, a modified spatial fre-
quency which represents the gradient energy of sun-images is pre-
sented to motivate the adaptive dual-channel unit-liking PCNN
neurons. The flexible multi-resolution and directional expansion
for images of NSCT are associated with global coupling and pulse
synchronization characteristics of PCNN. Two groups of experi-
ments on evaluating the fusion performance have been conducted
and the results show that the proposed algorithm can effectively
fuse infrared and visible images, has high contrast and remarkable
target information, and preserve rich information of texture and
details well. The proposed method is superior to the other current
fusion algorithms in terms of both visual quality and quantitative
evaluation.
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