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The past few decades have witnessed great progress for un-
manned aerial vehicles (UAVs) in civilian fields, especial-

ly in photogrammetry and remote sensing. In contrast with 
manned aircraft and satellites, UAVs have many promising 
characteristics—flexibility, efficiency, high spatial/temporal 
resolution, low cost, easy operation, and so forth—that make 
them an effective complement to the other two platforms 
and a cost-effective means for remote sensing. 

In light of the popularity and expansion of UAV-based 
remote sensing (UAV-RS) in the past few years, this article 
provides a systematic survey of recent advances and future 

prospects of UAVs for the remote sensing community. Spe-
cifically, we discuss and summarize the main challenges 
and key technologies of remote sensing data processing 
based on UAVs. Then, we offer an overview of the wide-
spread applications of UAVs in remote sensing. Finally, 
some prospects for future work are discussed. We hope this 
will provide remote sensing researchers with an overall pic-
ture of recent UAV-RS developments and help guide further 
research in this area.

COMPARING UAVs WITH  
SATELLITES/MANNED AIRCRAFT
With the world’s rapid economic and social development 
in recent years, great changes have been constantly taking 
place on Earth’s surface. Thus, there is a great demand in 
the remote sensing community for data on interesting re-
gions and to update geospatial information flexibly and 
quickly [1]–[3].
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MOTIVATION AND OBJECTIVE
Earth observation and geospatial information acquisi-
tion are achieved (Figure 1) mainly through the use of 
satellites (Table 1), manned aviation, and low-altitude re-
mote sensing [4]. Remote sensing based on satellites and 
manned aircraft often has the advantage of large-area 
or regional remote sensing emergency monitoring with 
multisensors [5]. However, due to the orbit of satellites, 
the area needed for planes to take off and land, meteo-
rological conditions, and so on, these two methods have 
some limitations, such as the following.

TIMELINESS OF DATA
In many time-critical remote sensing applications, it is 
of great importance to quickly acquire data with high 

temporal resolution. For instance, in emergency remote 
sensing, e.g., after earthquakes, floods, or landslides, fast 
response is paramount [6]. It is necessary to collect re-
mote sensing data about a disaster area promptly and fre-
quently for dynamic monitoring and analysis of the situ-
ation. Another example is precision agriculture, which 
requires short revisit times to examine in-field variations 
in crop conditions to guide the application of fertilizer, 
pesticides, and water [7].

However, although the launch of satellite constellations 
and the increasing number of operational systems have sig-
nificantly decreased satellite sensors’ revisit cycles to one 
day, as shown in Table 1, it may not be easy to quickly pro-
vide responses to abrupt changes and multiple per-day ac-
quisitions. Manned aviation platforms, although capable of 
collecting high-resolution data without the limitation of re-
visit periods, suffer from low maneuverability, high launch/
flight costs, airspace limitations, and complex logistics. 
Moreover, the data from these two platforms are often se-
verely constrained by weather conditions (e.g., cloud cover, 
haze, and rain), which affect data availability [8].

SPATIAL RESOLUTION
Remote sensing data with ultrahigh spatial resolution (e.g., 
centimeter level) play significant roles in some fine-scale 
remote sensing applications, such as railway monitoring, 
dam/bridge crack detection, reconstruction, and cultural 
heritage site restoration [9]. In addition, numerous studies 
have reported that images with centimeter-level spatial res-
olution (up to 5 cm or more) have the potential for study-
ing the spatiotemporal dynamics of individual organisms 
[10], mapping fine-scale vegetation species and their spatial 
patterns [11], estimating landscape metrics for ecosystems 

Satellite Remote Sensing:
Height: >150 km

Coverage: 10–1,000 km2

Aerial Remote Sensing:
Height: <30 km

Coverage: 10–100 km2

UAV-Based Remote Sensing:
Height: <3 km
Coverage: 0.1–100 km2

FIGURE 1. An illustration of satellite, manned aviation, and low-altitude UAV remote sensing platforms.

TABLE 1. EXAMPLES OF OPTICAL SATELLITE  
REMOTE SENSING.

NAME 
GSD OF  
PAN/MS (M) 

TEMPORAL 
RESOLUTION 
(DAYS) NATION

Planet Labs 0.72–5/- One United States 

GF-2 0.8/3.2 Five China 

Surperview-1 0.5/2 Four China 

Worldview-4 0.31/1.24 One to three United States 

GeoEye-1 0.41/1.65 Two to three United States 

Pleiades 0.5/2 One France 

SPOT-7 1.5/6 One France 

KOMPSAT-3A 0.4/1.6 One South Korea 

GSD: ground sample distance; PAN: panchromatic image;  
MS: multispectral image.
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[12], monitoring small coastal erosion changes [13], and so 
forth. Some examples are shown in Figure 2.

Currently, satellite remote sensing can provide high-spatial-
resolution images of up to 0.3 m but is still unable to meet the 
requirements of the aforementioned applications. Manned avi-
ation remote sensing is capable of collecting ultrahigh-spatial-
resolution data, but it is restricted by operational complexity, 
costs, flexibility issues, safety concerns, and cloud cover.

DATA QUALITY AND INFORMATION CONTENT
Data from satellite and manned aircraft platforms are vul-
nerable to cloud and atmospheric conditions, which at-
tenuate electromagnetic waves and cause information loss 
and data degradation. But low-altitude platforms have the 
advantage of flying closer to ground objects, which sig-
nificantly mitigates the effects of clouds and atmosphere. 
Therefore, low-altitude remote sensing has the advantage 
of collecting high-quality data with rich information and 
high definition, which benefits image interpretation. Mean-
while, there is no need for atmospheric corrections, as would 
be the case with traditional platforms [14].

Satellite and manned aircraft platforms also focus main-
ly on high-resolution orthophotos, and they are unable to 
provide high-resolution, multiview façade and occlusion-
area images, which play a central role in 3D fine modeling 
[15]. Moreover, it has been demonstrated that multiview in-
formation on ground objects is beneficial in analyzing the 
anisotropic characteristics of their reflectance and further 
improving image classification [16].

SMALL-AREA REMOTE SENSING
Satellite and manned aircraft platforms often run on fixed 
orbits or operate along preset regular paths. However, in 
many small-area remote sensing applications, e.g., small-
town planning, mapping of tiny islands, urban small-area 
geographic information updates, archeology, agricultural 
breeding, and infrastructure damage detection, there is a 
demand for collecting data along irregular planning routes, 
temporarily modifying a route, or hovering for closer ob-
servation. Traditional platforms’ lack of flexibility makes 
their utilization challenging. The factors of pilot safety and 
cost also limit the adoption of manned aircraft platforms. 
In addition, with traditional platforms, it may be difficult to 

acquire data in dangerous, difficult-to-access, or harsh envi-
ronments, such as polar remote sensing [17] and monitoring 
of nuclear radiation, volcanoes, and toxic spills [6].

Consequently, to compensate for these deficiencies, re-
mote sensing scientists have proposed some low-altitude 
platforms, such as light aircraft [18], remote-control airborne 
craft or kites [19], and UAVs [20]. Because of the unique ad-
vantages of UAVs, e.g., flexibility, maneuverability, economy, 
safety, high spatial resolution, and data acquisition on de-
mand, they have been recognized as an effective complement 
to traditional vehicles. In recent years, the boom in UAV tech-
nology and advances in the small-size, low-weight, and high-
detection-precision sensors equipping these platforms make 
UAV-RS a popular and increasingly used technique. It is also 
worth noting that the continuous enhancement of satellite 
constellations will improve the spatial/temporal resolution 
and data acquisition cost of spaceborne sensors. Therefore, in 
the future, it can be predicted that UAVs will replace manned 
aircraft platforms and become the main means for remote 
sensing, together with satellite platforms [21].

Considering the rapid evolution of UAV-RS, a comprehen-
sive survey on the current status of the technology is essential 
for gaining a clearer picture of the state of the art and pro-
moting further progress. Thus, this article presents a specific 
review of recent advances in UAV-RS technologies and ap-
plications over the past few years. Some prospects for future 
research are also addressed. We focus on the mini-UAV, which 
features fewer than 30 kg of maximum takeoff weight [12], 
[20], because this type of UAV, being more affordable and 
easier to carry and use than large-size UAVs, is one of the most 
widely employed types in the remote sensing community. 

Some examples of mini-UAVs are shown in Figure 3. A 
simple rotary-wing UAV-RS system appears in Figure 4. In 
this system, an eight-rotor craft is equipped with an infra-
red camera to acquire thermal radiation data around heat-
supply pipelines for detection of heat leakage. Recognizing 
space limitations, more detailed descriptions of unmanned 
aircraft and sensors specially designed for UAV platforms 
can be found in [20] and [22].

PREVIOUS SURVEYS
A number of representative surveys concerning UAV-RS 
have been published in the literature, as summarized in 

(a) (b) (c) (d)

FIGURE 2. Examples of ultrahigh-spatial-resolution remote sensing: (a) dam/bridge crack detection, (b) a Buddha reconstruction, (c) pine 
nematode detection, and (d) crop plant counting.
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Table 2. These include some excellent reviews of the hard-
ware development of unmanned aerial systems, e.g., crew-
less aircraft and sensors [14], [20], [22], [23], [33]. Less at-
tention has been paid to advances in UAV data processing 
techniques. Some surveys focus on specific aerial remote 
sensing data processing, such as image matching [27], [29] 
and dense image matching [28], that are not specifically 
for UAV data processing. Although the research reviewed 
in [20] and [23] presents some UAV data processing tech-
nologies, e.g., 3D reconstruction and geometric correc-
tion, a complete overview of UAV data processing and 
its recent advances is still lacking. In addition, the recent 
striking success and potential of deep learning and related 
methods in UAV data geometric processing have not been 
well investigated.

Some surveys review specific applications of UAVs in 
remote sensing, such as in agriculture [14], forestry [23], 
[24], natural resource management [26], environmental 
sensing [1], and glaciology [25]. Additionally, [20] and 
[22] provide comprehensive overviews of UAV-RS ap-
plications that also consider advances in remote sensing 
sensors and regulations. However, recent developments 
in UAV-RS technology have opened up some new applica-
tion possibilities, e.g., intelligent driving, path planning 

[35], and understanding pedestrian behavior [34], that 
have not been reviewed.

CONTRIBUTIONS
Considering the problems discussed previously, it is im-
perative to provide a comprehensive survey of UAV-RS, 
centering on UAV data processing technologies, recent 
applications, and future directions, all of which are the 
focus of this roundup. A thorough review and summary of 
existing work is essential for further progress in UAV-RS, 
particularly for researchers wishing to enter the field. Ex-
tensive work on other issues such as regulations [20], [30], 
[31] and operational considerations [12], [23], [33], which 
have been well reviewed in the literature, are not included.

TECHNIQUES FOR DATA PROCESSING
In this section, the main problems involved in UAV data 
processing are briefly introduced. Then, we discuss the gen-
eral processing framework and key technologies as well as 
recent improvements and breakthroughs.

MAIN CHALLENGES
Compared with satellite and manned aerial remote sens-
ing, UAV-RS has great advantages in terms of providing a 

(a)

(b)

(c)

(ii) (iii)(i)

(v) (vi)(iv)

FIGURE 3. Some examples of mini-UAVs for remote sensing: (a) fixed-wing UAVs; (b) (i) and (ii) rotary-wing UAVs and (iii) an unmanned 
helicopter; and (c) (iv) a hybrid UAV, (v) an umbrella UAV, and (vi) a bionic-UAV.
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low-cost solution for collecting data at the spatial, spectral, 
and temporal scales. However, it also faces some special 
hurdles because it is significantly different  from satellite 
and manned aerial remote sensing in the areas of plat-
forms, flight height, sensors, photographic attitude, and 
resistance to external effects (e.g., airflow).

◗◗ Nonmetric camera problem: Because of payload weight 
limitations, UAV-RS often uses low-weight, small-size, 
and nonmetric (consumer-grade) cameras, which inevi-
tably causes some problems.

•• Camera geometry issue: Camera factory parameters 
are generally inaccurate and often affected by ex-
traneous factors (e.g., camera shake). In addition, 
there is serious lens distortion in consumer-grade 
cameras, such as radial and tangential deformation. 
These problems reduce data processing accuracy, es-
pecially in spatial resection and object reconstruc-
tion [36]. Thus, it is necessary to carefully calibrate 
cameras before data processing.

•• Rolling-shutter issue: Most UAVs are equipped with 
low-cost rolling-shutter cameras. When the un-
manned aircraft flies in rolling-shutter acquisition 
mode, each row is exposed in turn and thus with a 
different pose [37], unlike in global-shutter mode. In 
addition, moving rolling-shutter cameras often pro-
duce image distortions [38] (e.g., twisting and slant-
ing). These are beyond the conventional geometric 

models in 3D vision. Thus, new methods for the use 
of rolling-shutter cameras are urgently needed.

•• Other issues: These include noise, vignetting, blurring, 
and color unbalancing, which degrade image quality.

◗◗ Platform instability and vibration effects: The weak wind re-
sistance of lightweight, small-size UAVs can lead to unsta-
ble sensor positions, which affects data quality [2], [12].

•• Data are often acquired with irregular air lines, even 
curved lines. This results in image overlap inconsis-
tency, which may cause image connection failure in 
aerial triangulation, especially between flight strips. 
Meanwhile, this also leads to complex and unor-
dered image correspondence, making it difficult to 
determine which pairs of images can be matched.

•• Variable sensor attitudes may result in large rotation 
and tilt variations among images, thus bringing 
about obvious image affine deformation. In addi-
tion, this can result in large nonuniformity of scale 
and illumination. These issues will be aggravated by 
complex terrain relief, presenting challenges for im-
age matching [39].

◗◗ Large number of images and high overlap: The small field of 
view (FOV) of cameras on UAVs and their low acquisi-
tion height make it necessary for these aircraft to capture 
more photographs than conventional platforms to en-
sure overlap and coverage. Therefore, on the one hand, it 
is common that some images cover only homogeneous 

GPS/IMU
Module

Unmanned Aerial
Platform

Ground Control
System

Remote Sensing
Sensors

Camera
Mount

Battery

Flight Control
System

FIGURE 4. An example of a rotary-wing UAV-RS data acquisition platform. IMU: inertial measurement unit.
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TABLE 2. RELATED SURVEYS ON UAV-RS IN RECENT YEARS.*

NUMBER SURVEY TITLE REFERENCE YEAR PUBLISHED CONTENT 

1 “Overview and Current Status of Remote 
Sensing Applications Based on  
Unmanned Aerial Vehicles (UAVs)”

[22] 2015 PERS A broad review of the current status  
of remote sensing applications based  
on UAVs 

2 “Unmanned Aerial Systems for Photo-
grammetry and Remote Sensing:  
A Review”

[20] 2014 ISPRS JPRS A survey of recent advances in UAVs and 
their applications in photogrammetry  
and remote sensing 

3 “Hyperspectral Imaging: A Review on 
UAV-Based Sensors, Data Processing, 
and Applications for Agriculture and 
Forestry”

[14] 2017 RS A survey of UAV-based hyperspectral  
remote sensing for agriculture and 
forestry 

4 “UAS, Sensors, and Data Processing in 
Agroforestry: A Review Towards  
Practical Applications”

[23] 2017 IJRS A survey of UAV data processing, applica-
tions, and sensors in agroforestry and 
some recommendations toward UAV 
platform selection 

5 “Forestry Applications of UAVs in Eu-
rope: A Review”

[24] 2017 IJRS An overview of UAV applications in forest 
research in Europe and an introduction 
to the regulatory framework for UAV 
operation in the European Union

6 “UAVs as Remote Sensing Platform in 
Glaciology: Present Applications and 
Future Prospects”

[25] 2016 RSE A survey of UAV-RS applications in  
glaciological studies, mainly in polar  
and alpine applications 

7 “Recent Applications of Unmanned  
Aerial Imagery in Natural Resource 
Management”

[26] 2014 GISRS A comprehensive review of applications 
of unmanned aerial imagery for the  
management of natural resources 

8 “Small-Scale Unmanned Aerial Vehicles 
in Environmental Remote Sensing:  
Challenges and Opportunities”

[1] 2011 GISRS An introduction to the challenges  
involved in using small UAVs for  
environmental remote sensing 

9 “Recent Developments in Large-Scale 
Tie-Point Matching”

[27] 2016 ISPRS JPRS A survey of large-scale tie-point matching 
in unordered image collection 

10 “State of the Art in High Density  
Image Matching”

[28] 2014 PHOR A review and comparative analysis of  
four dense image-matching algorithms, 
including SURE (semiglobal matching), 
MicMac, PMVS (patch-based multiview 
stereo), and Photoscan 

11 “Development and Status of Image 
Matching in Photogrammetry”

[29] 2012 PHOR A comprehensive survey of image- 
matching techniques in photogrammetry 
over the past 50 years 

12 “Review of the Current State of UAV 
Regulations”

[30] 2017 RS A comprehensive survey of civil UAV 
regulations on the global scale from the 
perspectives of past, present, and future 
development 

13 “UAVs: Regulations and Law  
Enforcement”

[31] 2017 IJRS An introduction to the development of 
legislation in different countries regard-
ing UAVs and their use 

14 “Unmanned Aerial Vehicles and Spatial 
Thinking: Boarding Education With 
Geotechnology and Drones”

[32] 2017 GRSM A review of the current status of  
geoscience and remote sensing  
education involving UAVs 

15 “Unmanned Aircraft Systems in Remote 
Sensing and Scientific Research: Clas-
sification and Considerations of Use”

[33] 2012 RS An introduction to UAV platform types 
and characteristics, some application 
examples, and current regulations 

16 “Mini-Unmanned Aerial Vehicle-Based 
Remote Sensing: Techniques, Applica-
tions, and Prospects”

— 2019 Ours A comprehensive survey of mini-UAV-RS, 
focusing on techniques, applications,  
and future development 

*This table shows only surveys published in top remote sensing journals. PERS: Photogrammetric Engineering and Remote Sensing; ISPRS JPRS: 
International Society for Photogrammetry and Remote Sensing Journal of Photogrammetry and Remote Sensing; RS: Remote Sensing; IJRS: 
International Journal of Remote Sensing; RSE: Remote Sensing of Environment; GISRS: GIScience & Remote Sensing; PHOR: The Photogrammetric 
Record; GRSM: IEEE Geoscience and Remote Sensing Magazine.
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areas with low texture, resulting in difficulties for fea-
ture detection. On the other hand, the great number 
of images may result in large-scale tie points, which in-
creases the difficulty and time for image matching and 
aerial triangulation. Furthermore, to ensure overlap, 
images are often acquired with a high degree of over-
lap, which may lead to short baselines and small base–
height ratios. Thus, this overlap may cause unstable 
aerial triangulation and low elevation accuracy.

◗◗ Relief displacement: Because of the low acquisition alti-
tudes relative to the variation in topographic relief, UAV 
image processing is prone to the effects of relief displace-
ment [40]. This can generally be removed by orthorecti-
fication, if the digital elevation/surface model represents 
the terrain correctly. It remains challenging to handle 
scenes with trees or buildings because of the large local 
displacement and occlusion areas with no data. The ef-
fects will also be obvious when mosaicking images with 
different degrees and directions of relief displacement, 
such as sudden breaks, blurring, and ghosting.

These issues present great difficulties for traditional photo-
grammetric processing approaches designed for well-cali-
brated metric cameras and regular photography. Hence, rig-
orous and innovative methodologies are required for UAV 
data processing and have become a center of attention for 
researchers worldwide.

GENERAL FRAMEWORK
A general UAV-RS workflow is shown in Figure 5. To con-
duct data acquisition, suitable UAV platforms and sensors 
are first selected according to the remote sensing tasks. More 
importantly, all of the hardware needs to be calibrated, in-
cluding the cameras and multisensor combinations, to deter-
mine the spatial relationship of different sensors and remove 
the geometric distortions caused by cameras. Then, mission 
planning is designed based on the topography, weather, and 
lighting conditions in the study areas. The flight parameters, 
such as flight path, flying altitude, image waypoints, flight 
speed, camera length, and exposure time, need to be carefully 

delineated to ensure data overlaps, full coverage, and data 
quality. Afterward, the data are often collected autonomous-
ly based on flight planning or by the flexible control of the 
ground pilot. Data are checked, and a supplementary photo-
graph is initiated, if necessary. After data acquisition, a series 
of actions is performed for data processing and analysis.

To illustrate UAV-RS data processing, we take the exam-
ple of the optical camera, one of the most widely applied 
sensors. The general data processing workflow can be seen 
in Figure 6. Specifically, the steps are as follows.

◗◗ Data preprocessing: Images collected from UAV platforms 
often require preprocessing to ensure their usefulness 
for further processing, including camera distortion cor-
rection, image color adjustment, noise elimination, vi-
gnetting, and blur removal [41].

◗◗ Aerial triangulation: This is also called structure from mo-
tion (SfM) in computer vision. It aims to recover the 
camera pose (position and orientation) per image and 
3D structures (i.e., sparse point clouds) from image se-
quences, which can also provide a large number of ori-
entation control points for image measurement. Data 
from the GPS and inertial measurement unit (IMU) are 
often used to initialize the position and orientation of 
each image. In computer vision, camera poses can be 
estimated based on image matching, which can also 
be adopted to generate a large number of tie points and 
build connection relationships among images. Bundle 
adjustment (BA) is used to optimize the camera posi-
tions and orientations and derive 3D scene structures. 
To meet the requirements of high-accuracy measure-
ment, the use of ground control points (GCPs) may be 
necessary to improve georeferencing, although this in-
volves time-consuming and labor-intensive work.

◗◗ Digital surface model (DSM) generation and 3D reconstruc-
tion: The oriented images are used to derive dense point 
clouds (or a DSM) by dense image matching. A DSM 
provides a detailed representation of the terrain surface. 
Combined with surface reconstruction and texture map-
ping, a 3D scene model can be well reconstructed.

(a) (b) (c) (d)

FIGURE 5. The general UAV-RS workflow: (a) selecting appropriate UAV platforms and sensors, (b) UAV flight planning, (c) data collection 
and check, and (d) data processing and analysis.
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◗◗ Digital elevation model (DEM) and orthophoto generation: 
A DEM can describe the surface topography without 
the effects of raised objects, such as trees and build-
ings. It can be generated from either sparse or dense 
point clouds. The former is accomplished with lower 
precision but higher efficiency than the latter. After 
that, each image can be orthorectified to eliminate the 
geometric distortion and then mosaicked into a seam-
less orthonormal mosaic at the desired resolution.

◗◗ Image interpretation and application: Based on orthopho-
tos and 3D models, image interpretation is performed 
to achieve scene understanding, including image/scene 
classification, object extraction, and change detection. 
Furthermore, the interpretation results are used for vari-
ous applications, such as thematic mapping, precision 
agriculture, and disaster monitoring.

Regardless of the platform that acquires remote sensing data 
(satellite, manned airborne, UAV, and so on), the interpretation 
methods are similar [14]. Therefore, photogrammetric process-
ing is the prominent concern regarding UAV-RS. This area is 
challenging for traditional processing approaches. Methods 
specially designed for UAV-RS data processing have been pro-
posed to overcome the difficult issues involved. In the follow-
ing, the related key technologies are reviewed and summarized.

CAMERA CALIBRATION
Unlike in traditional remote sensing data processing, cam-
era calibration is essential for UAV-RS because of the use 

of lightweight, nonmetric cameras that have not been de-
signed for photogrammetric accuracy [42]. Camera calibra-
tion aims to estimate the camera parameters to eliminate 
the impact of lens distortion on images and extract metric 
information from 2D renderings [43]. In aerial triangula-
tion, camera parameters, including intrinsic parameters 
(principal-point position and focal length) and lens dis-
tortion coefficients (radial and tangential distortion coef-
ficients), are often handled by precalibration or on-the-job 
calibration. The former calibrates cameras before BA, and 
the latter combines camera calibration parameters as un-
knowns into BA for joint optimization and estimation. The 
combination of the two is also adopted for high-accuracy 
data processing [44]. On-the-job calibration is often sensi-
tive to camera network geometry (e.g., nadir and oblique 
acquisition) and the distribution and accuracy of ground 
control [36]. Thus, precalibration is generally an essential 
component of UAV-RS data processing.

In camera calibration, pinhole cameras are often adjust-
ed based on a perspective projection model, while fisheye 
lenses are based on a spherical model, orthogonal projec-
tion, polynomial transform model, and so forth [48]. Meth-
ods for camera calibration and distortion correction can be 
generally classified into two categories: reference object-
based calibration and self-calibration. Reference object-
based calibration can be performed easily using the pro-
jected images of a calibration array, shown in Figure 7. The 
most rigorous method is based on a laboratory 3D physical 
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FIGURE 6. The general workflow of UAV-RS data processing. DOM: digital orthophoto map.
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calibration field, where coded markers are distributed in 
three dimensions with known accurate positions [49]. This 
method provides highly precise calibration parameters, but 
it is high in cost, inconvenient, and unsuitable for frequent 
recalibration in UAV-RS. An alternative, low-cost solution is 
based on a 2D calibration pattern, e.g., a checkerboard [45], 
a completely flat liquid crystal display-based method [46], 
or an AprilTag-based method [47]. It has been demonstrated 
that this solution can achieve an accuracy close to that of 
a 3D physical calibration field. Different patterns are de-
signed to improve the accuracy and ease of feature detection 
and recognition under various conditions.

It is worth noting that reference object-based calibra-
tion usually requires preprepared calibration patterns and 
extra manual operations that make it laborious and time 
consuming. By contrast, self-calibration, which depends 
on structural information detected in images without re-
quiring special calibration objects, is more flexible and ef-
ficient. It has, therefore, become an area of active research 
in recent years, especially for automatic rectification and 
calibration of fisheye images.

Among these methods, geometric structures (e.g., con-
ics, lines, and plumb lines) are first detected [43], [50], 
[51]. If given at least three conics on a distorted image, the 
camera’s intrinsic parameters can be obtained from the de-
composition of absolute conics. A fisheye image is gener-
ally rectified based on the assumption that a straight line 
should maintain its line property even after the projection 
of a fisheye lens. Several approaches have been proposed to 
extract geometric structures, such as the extended Hough 
transform [52] and multilabel energy optimization [53]. 
However, the effects of rectification are often limited by the 
accuracy of the geometric structure detection. 

More recently, deep convolutional neural network (CNN)-
based methods have been proposed, which try to learn 
more representational visual features to rectify the distort-
ed image [54]. The work in [55] proposed an end-to-end 
deep CNN that learns semantic information and low-level 
appearance features simultaneously to estimate the distor-
tion parameters and correct the fisheye image. However, 
this technique does not consider geometry characteristics, 
which are strong constraints in rectifying distorted imag-
es. To deal with this issue, Xue et al. [56] designed a deep 

network to exploit distorted lines as explicit geometry con-
straints to recover the distortion parameters of the fisheye 
camera and rectify the distorted image.

Some fisheye image rectification examples based on 
self-calibration are shown in Figure 8. The qualitative 
evaluation of a fisheye data set is reported in Table 3. It can 
be seen that deep CNN-based methods (e.g., [56]) achieve 
excellent rectification performance for fisheye images. 
However, some problems remain to be solved. The encod-
ing of other geometries, such as arcs and plumb lines, into 
CNNs is still a formidable issue. Designing robust geo-
metric feature detection methods, especially in the case of 
noise or low texture, is also an area requiring research. An-
other important challenge is to improve self-calibration 
to achieve an accuracy comparable to reference object-
based approaches.

COMBINED FIELD OF VIEW
Because of the low flight altitude and narrow FOV of cam-
eras on UAVs, UAV-RS often acquires images with a small 
ground coverage area, resulting in increased image num-
bers, flight lines, flight cost, and data collection time [58]. 
One solution to these issues is the combined wide-angle 
camera, which uses multiple synchronized cameras. The 
images acquired from this multicamera combination sys-
tem (i.e., an equivalent large-array camera) are rectified, 
registered, and mosaicked to generate a larger virtual im-
age, which can augment the coverage area [49]. In contrast 
to narrow cameras, the combined wide-angle method can 
increase acquisition efficiency and enlarge the base–height 
ratio. It also benefits the image connection, especially in 
some windy conditions. Another advantage is obtaining 
multiview images by oblique acquisition, which can over-
come photographic dead areas and sheltered targets. In 
[59], the combined wide-angle camera is used for photo-
grammetric surveying and 3D building reconstruction. Fig-
ure 9 shows an example of a four-camera system.

The combined wide-angle camera has been well stud-
ied in the UAV-RS community. However, improving its 
acquisition efficiency for larger-area mapping remains a 
concern. In this regard, an emerging opportunity is multi-
UAV collaboration, which uses fleets of simultaneously 
deployed, swarming UAVs to achieve a remote sensing 

(a) (b) (c) (d)

FIGURE 7. Examples of camera calibration: (a) a 3D physical calibration field, (b) checkerboard calibration [45], (c) the dual liquid crystal 
display-based method (taken from Zhan [46]), and (d) the AprilTag-based technique [47].



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    SEPTEMBER 201938 

goal. This approach improves spatial coverage and effi-
ciency, overcoming the spatial range limitations of a single 
platform and thus enhancing reliability because of redun-
dancy and allowing simultaneous intervention in sepa-
rate places [22], [60]. Each vehicle can transmit either the 
collected data or the processed results to ground worksta-
tions for further processing or decision making. Data can 

also be shared among different vehicles to guide optimal 
collaboration. 

For instance, in [61], a fleet of UAVs, equipped with vari-
ous sensors (infrared, visual cameras, and fire detectors), co-
operated for automatic forest fire detection and localization 
using a distributed architecture. The heterogeneous sensors 
increase the complexity of data processing, but they make 
it possible to exploit the complementarities of vehicles in 
different locations and flight attitudes and sensors with dif-
ferent perception abilities. Collaboration can be performed 
not only among multiple UAVs but also among UAVs and 
other remote sensing platforms, e.g., unmanned ground ve-
hicles and unmanned marine surface vehicles [62].

Multi-UAV collaboration has become an effective means 
of collecting accurate and massive information and has re-
cently received increased attention. It has been widely used 
in commercial settings, but there are some reports about ac-
cidents in multi-UAV systems. Thus, there is still a long way to 
go for broad application of these systems in the remote sens-
ing community. Some problems, however, are worth an effort 
to resolve, such as system resilience, complexity and commu-
nication among UAVs, navigation and cooperative control in 
harsh conditions, environmental sensing and collision avoid-
ance, detection of anomalies within the fleet, and disruption 
handling, including environmental obstacles, signal interfer-
ence, and attacks [49], [63]. Configuring the number of UAVs 
and planning flight routes to achieve optimal efficiency and 
performance are also demanding issues [64], [65].

LOW-ALTITUDE UAV IMAGE MATCHING
Image matching is one of the fundamental technologies in 
photogrammetry and computer vision and is widely used 
in image registration, image stitching, and 3D reconstruc-
tion [66]–[68]. It is a long-standing and challenging task, 

(b)(a)

FIGURE 9. (a) The combined four-camera system in [59]. (b) The 
overlapping layout of the images projected from the four cameras. 
(Taken from Lin et al. [59].)

TABLE 3. A QUALITATIVE EVALUATION OF RECTIFICATION ON 
A FISHEYE IMAGE DATA SET BY XUE ET AL. [56], USING PEAK 
SIGNAL-TO-NOISE RATIO (PSNR), STRUCTURE SIMILARITY 
INDEX (SSIM), AND REPROJECTION ERROR (RPE).

METHODS

BUKHARI 
AND  
DAILEY [52]

ALEMAN-
FLORES  
ET AL. [57]

RONG  
ET AL. [54]

XUE  
ET AL. [56]

PSNR 11.47 13.95 12.52 27.61 

SSIM 0.2429 0.3922 0.2972 0.8746 

RPE 164.7 125.4 121.6 0.4761 

FIGURE 8. Examples of fisheye image rectification. From left to right are the results taken from Bukhari and Dailey [52], Aleman-Flores et al. 
[57], Rong et al. [54], and Xue et al. [56].
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especially for UAV images, because of the strong geometric 
deformations (e.g., affine distortion), viewpoint changes, 
radiation/illumination variances, repetitive or low texture, 
and occlusion. Some examples of low-altitude UAV im-
age matching are shown in Figure 10. Although numerous 
matching algorithms have been proposed [29] over the last 
decades, they fail to provide good performance for low-al-
titude UAV images.

MULTIVIEW IMAGE MATCHING
Multiview photography can acquire data from the nadir and 
side-looking directions, especially in UAV-based oblique 
photogrammetry. However, this special data collection ap-
proach makes image matching astonishingly difficult, e.g., 
vertical and oblique image matching, because of the obvi-
ous difference in the appearance of images caused by the 
wide baseline and large viewpoint changes, especially af-
fine deformations [71].

Some attempts have been made to create local descrip-
tors invariant to affine distortions, such as the maximally 
stable extremal region (MSER), Harris/Hessian affine, af-
fine scale-invariant feature transformation (ASIFT), and 
Matching with On-Demand view Synthesis (MODS) [72]. 
Although these methods can handle images with view-
point variances, they either provide a small number of cor-
respondences or suffer from excessive time consumption 
and memory occupancy. Besides, these methods are not 
designed specifically for UAV cases and may have difficulty 
in meeting the demand for even distribution of correspon-
dences in images with unevenly distributed texture.

There are usually two strategies proposed to handle af-
fine deformations in UAV image matching. One is to per-
form multiview image matching based on MSER. The local 
regions are often normalized to circular areas, on which 
interest points are selected and matched. Considering the 
small quantity and uneven distribution of matching pairs, 
some geometric constraints, e.g., a local homography con-
straint, can be used to guide the propagative matching [73]. 
The other is to apply geometric rectification before image 
matching [39]. If the images collected by UAVs contain 
rough or precise exterior orientation elements and camera 
installation parameters, they can be used for geometric 
rectification of oblique UAV images to relieve perspective 
deformations. With the conventional descriptor match-
ing methods, sufficient and well-distributed tie points are 
then extracted and matched. The oblique images can also 
be rectified by coarse initial affine-invariant matching [72]. 
To achieve reliable feature correspondence, spatial relation-
ships and geometrical information can be adapted to guide 
the matching process and remove outliers, e.g., a local 
position constraint, cyclic angular ordering constraint, or 
neighborhood conserving constraint [71].

To obtain matching pairs that are as evenly distributed 
as possible, divide-and-conquer and tiling strategies are of-
ten adopted [39]. Images are split into blocks, and features 
are extracted and matched from the corresponding blocks. 

The number of points in each block can be adaptively deter-
mined by information entropy [74], [75].

Although significant progress has been achieved in UAV 
multiview image matching, there is still plenty of room for 
improvement. Because of deep CNNs’ powerful ability for 
feature representation and the huge success in image classi-
fication and target detection [76], there has recently been an 
explosive increase in image matching through deep learn-
ing [77]. Deep neural networks are designed to learn a local 
feature detector, such as temporally invariant learned detec-
tors from prealigned images of different times and seasons 
[78] or covariant local feature detectors, which regard fea-
ture detection as a transformation regression problem [79]. 

In fact, however, only limited progress has been made in 
deep feature detection because of the lack of large-scale an-
notated data and the difficulty of getting a clear definition of 
keypoints. By contrast, great effort has been made in develop-
ing learned descriptors based on CNNs, which have obtained 
surprising results on some public data sets. Feature descrip-
tors are often developed by Siamese or triplet networks with 
well-designed loss functions, such as hinge loss, SoftPN, 
joint loss, and global orthogonal regularization [80]. Besides, 
some geometric information is integrated to facilitate local 
descriptor learning, e.g., patch similarity and image similarity 
[81]. In [82], image matching is considered as a classification 
problem. An attention mechanism is exploited to generate a 
set of probable matches from which true matches are sepa-
rated by a Siamese hybrid CNN model.

(a)

(b)

(c)

FIGURE 10. Illustrations of low-altitude UAV image matching: (a) 
matching nadir and oblique images (taken from Xiao et al. [69]), 
(b) matching ground to aerial images (taken from Zhou et al. [70]), 
and (c) matching a UAV image to georeference images (taken from 
Zhuo et al. [67]).
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But it is well known that deep learning-based image 
matching requires large annotated data sets, while existing 
data sets are often small or lack diversity. The limited data 
source reduces the generalization ability of deep models, 
which may cause poor performance compared with hand-
crafted descriptors [81]. Although a diverse and large-scale 
data set (Hpatches) has recently been released, it was not 
constructed from UAV-RS images.

MATCHING WITH NON-UAV IMAGES
UAV images are often coregistered with existing georef-
erenced aerial/satellite images to locate GCPs for spatial 
information generation and UAV geolocalization [83]. To 
increase the number of keypoints, superpixel boundaries 
are adopted as feature points, followed by a one-to-many 
scheme for more matching hypotheses [67]. Geometric con-
straints based on pixel distance to correct matches are em-
ployed for mismatch removal at repetitive image regions. 
Considering the illumination variation between UAV and 
satellite images, illumination-invariant image matching 
was proposed based on phase correlation to match the on-
board UAV image sequences to preinstalled reference satel-
lite images for UAV localization and navigation [84].

It is a huge challenge to match UAV images with ground-/
street-view images because of the drastic change in view-
point and scale, which causes the failure of traditional de-
scriptor-based matching. Some approaches have attempted 
to warp the ground image to the aerial view to improve fea-
ture matching [85]. Besides, in [86], the matching problem 
is considered as a joint regularity optimization problem, 
where the lattice tile/motif is used as a regularity-based de-
scriptor for façades. Three energy terms—edge shape con-
text, Lab color features, and Gabor filter responses—are de-
signed to construct a matching cost function. 

Another promising method is to employ CNNs to learn 
representations for matching between ground and aerial 
images. In [87], a cross-view matching network was de-
veloped to learn local features and then form global de-
scriptors that are invariant to large viewpoint changes for 
ground-to-aerial geolocalization. In addition, to handle 
image matching across large-scale differences, which in-
clude small-scale features to establish correspondences, 
Zhou et al. [70] divided the image scale space into multiple 
scale levels and encoded it into a compact multiscale repre-
sentation by bag of features. The matching then restricted 
the correspondence search of query features within the lim-
ited related scale space, thus improving the accuracy and 
robustness of feature matching under large-scale variations.

CHALLENGES IN UAV IMAGE MATCHING
Although tremendous efforts have been devoted to low-
altitude image matching, many problems still need to be 
considered, especially in terms of the following.

◗◗ With the exception of interest points, geometric structure 
features that represent more information, e.g., lines, junc-
tions, circles, and ellipses, can play a significant role in 

multiview image matching, especially in urban scenarios 
[88]–[90]. Geometric features are often invariant to ra-
diometric change and scene variation over time. A small 
amount of work has been concentrated on line-based 
image matching [91]. More effort is worth investing to 
develop image matching based on geometric features.

◗◗ The deep learning-based approach is promising for UAV 
image matching. However, the lack of large-scale anno-
tation data sets from UAV data hinders the development 
of novel and more powerful deep models. Moreover, 
CNNs learning of the detectors and descriptors of struc-
ture features for image matching is an issue. Geometric 
information (e.g., local coplanar), often overlooked in 
the learning process, can be encoded into deep neural 
networks to improve their matching performance. With 
the exception of feature detection and description, geo-
metric verification can be encoded into neural networks 
for outlier rejection [92].

◗◗ Cross-view image matching has drawn a lot of attention 
in recent years. It plays an important role in image-based 
geolocalization and street-to-aerial urban reconstruc-
tion. However, large viewpoint/scale differences should 
be well considered. More powerful deep models and 
more effective scale-space image encoding approaches 
are needed.

LOW-ALTITUDE AUTOMATIC AERIAL TRIANGULATION
Aerial triangulation, i.e., recovering camera poses and 3D 
scene structures from 2D images, is a fundamental task in 
photogrammetry and computer vision. For manned aerial 
photogrammetry that collects images vertically, automatic 
aerial triangulation (AAT) has been well studied [93]. As 
to UAV-based photogrammetry, however, it has been dem-
onstrated that the long-established and proven photogram-
metric AAT cannot handle UAV blocks [94]. This is because 
low-altitude UAV-RS breaks the acquisition mode of tra-
ditional photogrammetry (discussed in the section “Main 
Challenges” under “Techniques for Data Processing”) and 
does not meet the assumptions of conventional AAT [95].

In the last few years, SfM has greatly benefited low-alti-
tude UAV AAT [96]. SfM simultaneously estimates the 3D 
geometry of a scene (structure), the poses of cameras (mo-
tion), and possibly the intrinsic calibration parameters of 
cameras without the need for either camera poses or GCPs to 
be known prior to scene reconstruction [97]. Some tests that 
apply SfM software to UAV-based aerial triangulation have 
demonstrated that SfM can break through the obstacles of 
irregular UAV blocks for robust low-altitude UAV AAT [20].

STRUCTURE FROM MOTION
SfM is generally divided into three types (incremental, 
global, and hierarchical), according to the camera pose ini-
tialization. A simple comparison of these three paradigms 
appears in Table 4. To make full use of incremental and 
global SfM, a hybrid SfM has been proposed that estimates 
camera rotations in a global way based on an adaptive, 
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community-based rotation averaging while estimating 
camera centers in an incremental manner [98]. To achieve 
city-scale sparse reconstruction, Zhu et al. [99] grouped 
cameras, performed local incremental SfM in each clus-
ter, and then conducted global averaging among clusters. 
The hybrid SfM method possesses both robustness from its 
incremental aspect and efficiency from its global feature. 
However, repeated BA is still needed in the estimation of 
camera centers, an area that requires additional research.

Recently, semantic information was integrated into sparse 
reconstruction [100]. This approach considers the semantic 
SfM as a maximum-likelihood problem to jointly estimate 
the semantic information (e.g., object classes) and recover 
the geometry of the scene (camera pose, objects, and points). 
However, because of its large memory and computational 
cost, this method is often limited to small scenes and low res-
olution. Semantic information can also be used to constrain 
feature matching and BA by semantic consistency [101].

IMAGE ORIENTATION
In SfM, camera poses are often estimated from feature cor-
respondences by solving the perspective-n-point problem 
and then optimizing by BA. Moreover, external orientation 
sensors can be adopted for camera pose estimation. If UAVs 
are equipped with high-quality GPS/IMUs, the camera po-
sitions and orientations can be directly estimated from the 
GPS/IMU data without the need of GCPs, namely, through 
direct sensor orientation or direct georeferencing [102]. 
Besides, orientation parameters from the GPS/IMU can 
be used to initialize the camera poses and then integrate 
them into aerial triangulation for BA, i.e., integrated sensor 
orientation. However, UAVs are often mounted with low-
accuracy navigation sensors because of payload limitations 
and the high cost of low-weight, highly precise navigation 
systems. Therefore, GCPs are adopted for precise aerial 
triangulation (indirect sensor orientation), which is time 
consuming and laborious.

The existing SfM approaches generally rely heavily on 
accurate feature matching. Some failure may be caused by 
low/no texture, stereo ambiguities, and occlusions, which are 
common in natural scenes. Thus, to break through these lim-
itations, deep models have recently been applied for camera 
pose estimation or localization [103]. In [104], a PoseNet was 
designed to regress the camera pose from a single image in an 
end-to-end manner. The traditional SfM was also modeled 
by learning the monocular depth and ego-motion in a cou-
pled way, which could handle dynamic objects by learning 
an explainability mask [105], [106]. However, the accuracy of 
these methods is far from that of traditional SfM. Moreover, 
they are dependent on the data set, and it is difficult for them 
to provide good generalization. Thus, it would be beneficial 
to build more diverse data sets and encode more geometric 
constraints into deep models.

STRUCTURE FROM MOTION FOR  
ROLLING-SHUTTER CAMERAS 
Most off-the-shelf cameras are equipped with a rolling 
shutter because of the low manufacturing cost. However, 
its row-wise exposure delay produces some problems. In 
the presence of camera motion, each row is captured in 
turn and thus with a different pose, which causes severe 
geometric artifacts in the recorded image (e.g., skew and 
curvature distortions). This is a considerable problem for 
classical global-shutter geometric models and results in 
severe errors in 3D reconstruction. Thus, new methods 
adapted to rolling-shutter cameras are strongly desired.

Some works have contributed to correcting rolling-shut-
ter distortions [107]. One technique is to use interframe 
correspondences to estimate the camera trajectory and reg-
ister frames. The continuity and smoothness of the cam-
era motion between video frames can also be combined 
to improve performance. Another way is to implement 
correction as an optimization problem based on straight-
ness, angle, and length constraints on the detected curves 

TABLE 4. A COMPARISON OF THREE SFM PARADIGMS.*

ITEM INCREMENTAL GLOBAL HIERARCHICAL 

Match graph 
initialization

Initialized by selected seed image pairs All images treated equally Atomic models

Camera  
registration 

Perspective-n-Point, 2D–3D  
correspondences 

Rotation and translation averaging 3D–3D fusion 

BA Iterative, many times One time BA when merging 

Advantages Robust, high accuracy, good completeness  
of the reconstructed scene

Evenly distributed errors, high efficiency Fewer BA steps 

Disadvantages Prone to drifting errors, low efficiency Prone to noisy pairwise matches, relatively  
low accuracy, low completeness of the  
reconstructed scene

Model merging, graph partition

Tools Bundler, OpenMVG, VSFM, MVE, ColMap OpenMVG, 1DSfM, DISCO, Theia Research papers 

*Tianwei Shen, Jinglu Wang, Tian Fang, and Long Quan, “Tutorial: Large-Scale 3D Reconstruction From Images,” Asian Conference on Computer 
Vision, 2016. OpenMVG: open multiple view geometry; VSfM: visual SfM; MVE: multiview environment; 1DSfM: 1D SfM; DISCO: discrete-continuous 
optimization for SfM.
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to estimate the camera motion and thus rectify the rolling-
shutter effect. This method is sensitive to feature choice and 
extraction. Recently, CNNs were adopted to automatically 
learn the interplay between scene features and the row-wise 
camera motion and correct the distortions [108]. Large-
scale data sets are obviously required. They often train 
CNNs on synthetic data sets, which may be different from 
real cases, but this is a promising approach.

In the case of conventional SfM, rolling-shutter effects 
are modeled [37], [109]. This complex model is shattered 
into a constellation of simple global-shutter, linear-per-
spective feature cameras. The poses (i.e., rotation and trans-
lation) of each feature are linearly interpolated according to 
their vertical position in the image between successive key 
poses. Usually, a linear interpolation is used for translation 
and a spherical linear interpolation for rotation. In general, 
one may insert as many key poses as tracked features.

CHALLENGES IN AERIAL TRIANGULATION
Although aerial triangulation/SfM is a long-standing prob-
lem, it still faces many hurdles, such as very large-scale and 
high-efficiency SfM, AAT with arbitrary images, and mul-
tisource data AAT (ground/street images and UAV images). 
Additionally, there is a long way to go with semantic SfM 
and deep CNNs for camera pose estimation.

DENSE RECONSTRUCTION
A complete workflow of 3D construction includes SfM, 
dense reconstruction, surface reconstruction, and texture 
mapping [15], as shown in Figure 11. Once a set of UAV 
images is oriented (the known camera poses), the scene can 
be densely reconstructed by dense image matching—i.e., 
multiview stereo (MVS) matching—which is the focus of 
this section.

MULTIVIEW STEREO RECONSTRUCTION
Numerous MVS algorithms have been proposed, e.g., 
semiglobal matching, patch-based methods, and visibility-
consistent dense matching [28]. To search for correspon-
dences, similarity or photoconsistency measures are often 
adopted to compare and estimate the likelihood of two 
pixels (or groups of pixels) being in correspondence. The 

most common photoconsistency measures include nor-
malized cross correlation, the sum of absolute or squared 
differences, mutual information, census, rank, dense fea-
ture descriptors, gradient-based algorithms, and bidirec-
tional reflectance distribution functions [110]. MVS is of-
ten formulated as a function of illumination, geometry, 
viewpoints, and materials and thus can be regarded as a 
constrained optimization problem solved by convex opti-
mization, Markov random fields, dynamic programming, 
or the graph-cut or maximum-flow methods [28].

Most conventional MVS matching techniques are adapt-
ed directly for UAV image-based surface reconstruction 
[111]. Considering the perspective distortions in oblique 
images, epipolar rectification is performed based on the 
cost of angle deformation before MVS matching [112]. To 
minimize the influence of boundaries, a hierarchical and 
adaptive phase correlation is adopted to estimate the dis-
parity of the UAV stereo images [113]. In addition, some 
tricks have been proposed to improve the performance of 
conventional methods, including graph networks, image 
grouping, and self-adaptive patches [69].

LEARNING-BASED MULTIVIEW STEREO
The aforementioned methods use handcrafted similarity 
metrics and engineered regularizations to compute dense 
matching and are easily affected by sudden changes in 
brightness and parallax, repeated/no textures, occlusion, 
large deformations, and the like.

Recent success in deep learning research has attracted 
interest in improving dense reconstruction. Numerous 
works apply CNNs to learn pairwise matching cost [114] 
and cost regularization [115] and to perform end-to-end 
disparity learning [116]. However, most methods focus on 
stereo matching tasks, and it is nontrivial to extend them 
to multiview scenarios. Furthermore, the extended opera-
tions do not fully utilize the multiview information and 
lead to less accurate results. Input images could also be of 
arbitrary camera geometries.

There are fewer works on learned MVS approaches. Sur-
faceNet [117] and Learned Stereo Machines [118] encode 
camera information in the network to form the cost volume 
and use 3D CNN to infer the surface voxels. However, these 

(a) (b) (c) (d) (e)

FIGURE 11. The steps in image-based, multiview 3D reconstruction. Based on (a) UAV images, (b) SfM is performed to estimate camera pos-
es and sparse 3D structure. (c) Dense reconstruction (MVS matching) is then adopted to generate the dense 3D scene structure. (d) Surface 
reconstruction (mesh generation) is conducted to generate a surface model. (e) After texture mapping, the real 3D model is reconstructed.
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methods are limited by the huge memory consumption of 
3D volumes and thus handle only small-scale reconstruc-
tions. DeepMVS [119] takes a set of plane-sweep volumes 
for each neighbor image as input and produces high-qual-
ity disparity maps that can handle an arbitrary number of 
posed images. 

MVSNet [120] builds the 3D cost volume on the cam-
era frustum instead of on the regular Euclidean space 
and produces one depth map each time. Thus, this ap-
proach makes large-scale reconstruction possible. How-
ever, because of the annotated data without the complete 
ground truth mesh surfaces, the technique may be dete-
riorated by occluded pixels. The works in [121] provide 
comparison experiments and demonstrate that deep 
learning-based and conventional methods perform at al-
most the same level, although deep learning approaches 
have better potential to achieve good accuracy and re-
construction completeness.

CHALLENGES IN DENSE RECONSTRUCTION
Although great success has been achieved, some issues that 
require additional research remain.

◗◗ Specular object reconstruction: Most MVS algorithms often 
impose strong Lambertian assumptions on objects or 
scenes, but there are many specular objects or isotropic 
reflectance objects in man-made environments. Multiv-
iew reconstruction of these glossy surfaces is a challeng-
ing problem. One promising method may be to adopt 
generative adversarial networks for transferring multiple 
views of objects with specular reflection into diffuse 
ones [122].

◗◗ Dynamic scene modeling: Most existing 3D reconstruction 
methods assume a static, rigid scene. How to reconstruct 
a dynamic scene is a demanding issue. One possible way 
is to presegment the scene into different regions that are 
locally rigid and then apply rigid SfM and MVS to each 
of them [123].

◗◗ Multisource 3D data fusion: Few attempts have been made 
in the fusion of aerial and ground-based 3D point clouds 
or models [124]. The large differences in camera view-
points and scales make it tricky to align the aerial and 
ground 3D data. Moreover, it is a formidable task to re-
construct a single, consistent 3D model that is as large as 
an entire city with details as small as individual objects.

IMAGE STITCHING
Because of the small footprint of UAV images, it is es-
sential to develop automatic image stitching/mosaicking 
techniques to combine multiple images with overlapping 
regions into a single large, seamless composite image with a 
wide FOV or panorama [125], [126]. Image stitching gener-
ally includes geometric correction and image composition. 
Images acquired from different positions and attitudes 
are registered on an identical mosaic or reference plane 
in geometric correction, and then the inconsistencies in 
geometry and radiation (e.g., color or brightness) among 

geometrically corrected images are mitigated or eliminated 
by image composition. 

Some examples of image stitching are shown in Figure 12. 
According to the different methods for geometric correc-
tion, image stitching can be divided into orthorectifica-
tion-based stitching and transformation-based stitching, 
detailed in the following sections. Image composition, in-
cluding seamline generation, color correction, and image 
blending, is generally similar to that used with other re-
mote sensing platforms. Recognizing space limitations, we, 
therefore, refer interested readers to several papers [127]–
[129] for a detailed description.

ORTHORECTIFICATION-BASED IMAGE STITCHING
Orthorectification-based image stitching is an essential step 
for the generation of digital orthophoto maps (DOMs), 
which are used for photogrammetric recordings and docu-
ments and are also the base maps for remote sensing inter-
pretation. Images are often orthocorrected based on camera 
poses and 3D terrain information (e.g., DEMs/DSMs and 
GCPs) to reduce the geometric deformation and achieve 
spatial alignment on the same geographical coordinate sys-
tem. In [102], DEMs/DSMs are generated from SfM point 
clouds, which are then transformed into real-world coor-
dinates based on direct/indirect/integrated georeferencing. 

(a) (b)

(c)

FIGURE 12. Examples of image stitching. (a) and (b) Orthorectifi-
cation-based stitching: (a) an inaccurate mosaic map generated by 
direct georeferencing using the original inaccurate IMU/GPS data; 
(b) a mosaic map generated based on registration with the refer-
ence map in [130]. (c) Transformation-based stitching. An automati-
cally constructed urban panorama with 14 wide-baseline images 
based on the mesh-optimization stitching method proposed in 
[131]. (a) and (b) are taken from Faraji et al. [130]. (c) is taken from 
Zhang et al. [131].
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In [132], images are corrected by global transformations 
derived from the relationships between GCPs and the cor-
responding image points. Considering the exterior orienta-
tion inaccuracy of the GPS/IMU and the difficulties in ac-
quisition of GCPs, another orthorectification technique is 
based on registration with the aerial/satellite orthorectified 
map [130]. This approach is more efficient and convenient 
because it avoids complex aerial triangulation and DEM 
generation and the laborious acquisition of GCPs. But its 
mandatory prerequisite is the reference maps.

TRANSFORMATION-BASED IMAGE STITCHING
Orthorectification-based image stitching can rectify geo-
metric distortions and provide geographic coordinate in-
formation, but it is generally computationally complex and 
time consuming, which makes it unsuitable for time-criti-
cal remote sensing applications [133] such as disaster, emer-
gency, and security monitoring. The transformation-based 
technique, however, provides an effective mosaic method 
based on transformations calculated from matching corre-
spondences between adjacent images [134].

A simple approach is to exploit one global transforma-
tion to align images [135]. However, it works well only un-
der the assumptions of roughly planar scenes or parallax-
free camera motion [66], which may be violated in most 
UAV-based data acquisition cases. Although advanced im-
age composition can mitigate the stitching artifacts gener-
ated by these methods, they remain when there are mis-
alignments or parallax.

To deal with this problem, spatially varying warping 
methods have been proposed for image alignment. One is 
to adopt multiple local transformations to locally align im-
ages, including as-projective-as-possible warping [136] and 
the elastic local alignment model [137]. The other is to con-
sider registration as an energy optimization problem, with 
geometric or radiometric constraints based on the mesh 
optimization model [131], [138]. Local transformations can 
also be integrated with mesh models to provide good stitch-
ing [139]. Spatially varying warping models can handle 
moderate parallax and provide satisfactory stitching per-
formance, but they often introduce projective distortions, 
e.g., perspective and structural deformations, because of the 
nonlinear nature of these transformations. Some methods 
have been proposed to handle distortions, such as the glob-
al similarity prior model [140] and structural constraint 
model [139], but more effort needs to be invested in stitch-
ing images accurately with reduced distortion.

Another approach is seam-guided image stitching [141], 
which has the potential to handle large parallax. Multiple 
transformation hypotheses can be estimated from differ-
ent groups of feature correspondences. Seam-line quality is 
then utilized to evaluate the alignment performance of dif-
ferent hypotheses and select the optimal transformation. 
This method adopts a local transformation for global align-
ment, so it would become trapped when tackling images 
with complex multiplane scenes.

CHALLENGES IN IMAGE STITCHING
Although numerous stitching methods have been devel-
oped, there are open problems, especially in stitching imag-
es with efficiency, registration accuracy, and reduced distor-
tion. More research should be devoted to high-efficiency/
real-time image stitching, large-parallax image stitching, 
and distortion handling. Additionally, there have recently 
been some attempts using deep learning in homography es-
timation and image dodging [142], [143]. However, there is 
still much room for improvement. This is a promising and 
worthwhile direction for research.

MULTISENSOR DATA REGISTRATION
With the advent of increasingly available sensors, UAV-RS 
platforms are often equipped with multiple tools (e.g., vis-
ible cameras, infrared sensors, or laser scanners) that can 
either collect a variety of data at a time to achieve multiple 
tasks or integrate these complementary and redundant data 
for better understanding of the entire scene. However, the 
data from multiple sensors often have dramatically differ-
ent characteristics, e.g., in resolution, intensity, geometry, 
and even data dimension, due to different imaging princi-
ples. This poses a huge problem for integrating multisensor 
data for remote sensing applications [144].

Multisensor data registration is a mandatory prerequi-
site. The data are then fused for interpretation. Because of 
space limitations, this section focuses on multisensor data 
registration. Remote sensing data fusion is not discussed 
here but can be explored in the surveys in [145] and [146].

MULTIBAND IMAGE REGISTRATION
The registration of multiband images, e.g., visible and 
infrared images or visible and synthetic aperture radar 
images, has caused great concern in recent years. The 
area-based method commonly adopts intensity statistics 
information, such as mutual-information and entropy-
based measures [147], to handle the large appearance dif-
ferences. These techniques have difficulty handling large 
radiometric distortions because they are mainly based on 
image intensities. But structure features, such as gradi-
ents, edge information, local self-similarities, and phase 
congruency, are more robust to radiometric changes and 
are integrated as similarity metrics to improve registration 
performance [148]. However, these methods are computa-
tionally expensive.

Feature-based registration often extracts geometric fea-
tures and then matches them based on descriptor match-
ing [149], [150]. However, traditional gradient- or intensity-
based feature descriptors are not suitable for multimodal 
image matching because of the large gradient differences. 
Thus, some structure features, e.g., line segments and edg-
es, are described by geometrical relationships, edge his-
tograms, or log-Gabor filters [151]. Figure 13 shows some 
promising results and demonstrates the effectiveness of 
description based on structure information, but the per-
formance is far from satisfactory. Therefore, much room 
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for development still exists. Moreover, it is challenging to 
extract highly repeatable homonymy features from multi-
band images because of nonlinear radiometric differences.

REGISTRATION OF LIDAR AND OPTICAL IMAGES
Registration of lidar and optical images is common in 
UAV-RS. The simple approach is direct georeferencing, but 
it is difficult to achieve high-accuracy registration because 
of platform vibration, unknown exposure delay, limita-
tions of hardware synchronization and calibration, and 
the low accuracy of onboard GPS/IMU sensors. There are 
often three other strategies, as follows.
1)	 The problem can be considered as a multimodal image 

registration by transforming lidar data into images, in-
cluding grayscale-encoded height and return-pulse in-
tensity images (also called reflectance images). Thus, area-
based and feature-based multimodal image registration 
can be used.

2)	 The problem can be converted to the registration of two 
point sets, one lidar and the other image-derived. Itera-
tive closest point (ICP) algorithms can be used. Salient 
features are often extracted from two point sets for regis-
tration, used as the initialization of the ICP [152].

3)	 Registration can be performed directly between a lidar 
point cloud and optical images, often based on line and 
plane features.

With the first method, area-based techniques are often af-
fected by the return-pulse intensity calibration, which de-
termines the quality and correctness of the intensity image. 
In contrast, feature-based methods provide robust registra-
tion [153]. Transformation error may also affect registra-
tion. In the second strategy, there is a large difference be-
tween the two point sets. Lidar provides a set of irregularly 
distributed points with abundant information along ho-
mogeneous areas but poor information along object space 
discontinuities; the image-derived point set is the opposite. 
In addition, the accuracy of the image-derived point set and 
the initialization of the ICP are nontrivial issues. As for the 
third approach, it can be a daunting task to automatically 
find conjugate features in both data sets.

CHALLENGES IN DATA REGISTRATION
Multisensor data registration has attracted increasing atten-
tion, but there are problems that need to be resolved. Con-
sidering the invariance of the semantic information of the 
targets in multimodal images, the semantic feature or target 
can be extracted for registration. Few works have been de-
voted to considering the complex cases involving scale, ro-
tation, and affine issues in multimodal image registration. 
Moreover, multisensor image registration based on CNNs is 
a promising research direction.

HIGH-PERFORMANCE DATA PROCESSING
With large amounts of information, the complexity of pro-
cessing algorithms, and the demand for fast response, the 
time to automatically and efficiently process and deliver 

remote sensing products to users has become an overarch-
ing concern for UAV-RS. One available approach is to per-
form data processing with low-complexity algorithms and 
few manual interventions, such as image location estima-
tion with fewer or no GCPs or direct georeferencing [102]. 
In the area of deep CNNs, some tricks for lightweight mod-
els have been proposed, including removing regions of pro-
posal for object detection [154], model compression and ac-
celeration by parameter sharing, pruning, low-rank matrix 
decomposition, and knowledge distillation [155].

Another effective solution is high-performance comput-
ing [156], [157], such as parallel computing. Unlike serial 
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FIGURE 13. The results of visible and infrared image matching 
(taken from Chen et al. [151]): (a) the average recognition rate of dif-
ferent multimodal image matching methods and (b) the recognition 
rate of different rotations. These experiments were conducted on 
the VIS-IR and CVC-Multimodal data sets. The recognition rate is de-
fined as the number of correct matches among all of the correspon-
dences. The results in (a) demonstrate the effectiveness of methods 
based on structure information. However, most approaches provide 
poor performance under rotation issues, as shown in (b). Thus, 
there is still plenty of room for improvement. EHD: edge histogram 
descriptor; PCEHD: phase congruency and EHD; LGHD: log-Gabor 
histogram descriptor; RIDLG: rotation-invariant feature descriptor 
based on multiorientation and multiscale log-Gabor filters.
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computation for data processing, parallel computing al-
lows the simultaneous use of multiple computer resources 
to accelerate data processing. Some available strategies are 
as follows.

◗◗ Hardware accelerators: These include field-programma-
ble gate arrays (FPGAs) and graphics processing units 
(GPUs). GPUs hold great potential for computer-inten-
sive, massively parallel computation and have gained 
much attention in the area of UAV data processing 
[158], [159]. They can also be used for onboard, real-
time processing.

◗◗ Cluster computers: The processing task is broken down 
into subtasks and then allocated to different computers. 
This approach is particularly appropriate for efficient in-
formation extraction from very large local data archives.

◗◗ Cloud computing: This sophisticated, high-performance 
architecture is used for service-oriented and high-per-
formance computing. For instance, cloud computing 
is employed for processing image data to generate 3D 
models in distributed architectures [160].

In large-scale UAV-RS data acquisition, it can be a chal-
lenge to achieve the best path planning for collecting the 
optimal and minimum amount of information to meet the 

requirements of remote sensing tasks—the issue also be-
ing to reduce invalid or redundant data and mitigate the 
difficulty of extracting information from massive data. 
Another important concern related to fast computing is 
the volume, weight, cost, and large energy consumption of 
high-performance computing architectures, which make 
onboard processing difficult. The recent literature provides 
few examples of the use of high-performance computing 
to implement UAV-RS generic data processing. Thus, more 
investigation is required in this domain.

A LIST OF OPEN SOURCE DATA AND ALGORITHMS
To provide an easy starting point for researchers attempt-
ing to work on UAV-RS photogrammetric processing, we 
here list some available resources, including tools and some 
algorithms. In addition, we provide a selected list of open 
source UAV-RS data sets for evaluating algorithms and 
training deep learning models. Note that the open source 
resources listed in the following are not exhaustive.

TOOLS AND ALGORITHMS FOR UAV-BASED  
REMOTE SENSING DATA PROCESSING
Some proposed open source tools and algorithms that can 
be used for UAV-RS photogrammetric processing are shown 
in Tables 5 and 6. The algorithm code can be downloaded 
from the respective papers. Although all of these examples 
are offered with open licenses, the corresponding papers 
must be acknowledged when using the code. The rules on 
the respective websites apply. Please read the specific terms 
and conditions carefully. These available tools provide great 
convenience for the development of algorithms for UAV-RS 
data processing and make it easy to get started.

OPEN SOURCE REMOTE SENSING DATA
Large data sets are in demand to train deep learning mod-
els with good generalization, for both fine-tuning models 
and training networks from scratch. They are also useful for 
evaluating the performance of various algorithms. Howev-
er, few works about open source UAV-RS data sets have been 
made public in recent years, representing an area for addi-
tional research effort. Some of the data sets are as follows.

◗◗ Fisheye rectification data set [55]: This is a synthesized data 
set that covers various scenes and distortion parameter 
settings for the rectification of fisheye images. It contains 
2,550 source images, each of which is used to generate 10 
samples with various distortion parameter settings.

◗◗ International Society for Photogrammetry and Remote Sensing 
(ISPRS)/European Spatial Data Research (EuroSDR) bench-
mark for multiplatform photogrammetry [163]: The ISPRS/
EuroSDR provides three data sets (i.e., oblique airborne, 
UAV-based, and terrestrial images) over the two cities of 
Dortmund, Germany, and Zürich. These data sets are used 
to assess different algorithms for image orientation and 
dense matching. Terrestrial laser scans, aerial laser scans, 
topographic networks, and global navigation satellite sys-
tem points were acquired as ground truths to compare 3D 

TABLE 6. EXAMPLES OF AVAILABLE ALGORITHMS  
FOR UAV-RS DATA PROCESSING.

ITEM ALGORITHMS 

Camera calibration Extended Hough transform [52],  
one-parameter division model [57], 
MLEO [53], CNN based [54]

Image matching TILDE [78], TCD [79], ASJ detector [89], 
spread-out descriptor [80], CVM-Net [87] 

Aerial triangulation PoseNet [104], SfMLearner [105],  
1DSfM [161] 

Dense reconstruction PMVS [162], MVSNet [120],  
DeepMVS [119]

Image stitching APAP [136], ELA [137], NISwGSP [140], 
Planar mosaicking [135] 

Multisensor registration LGHD [151], HOPC [148] 

TABLE 5. EXAMPLES OF AVAILABLE TOOLS  
FOR UAV-RS DATA PROCESSING.

ITEM TOOLS 

Computer vision OpenCV and VLFeat

UAV data processing OpenDroneMap 

SfM library Bundler, VisualSFM, OpenMVG,  
MVE, Theia, and ColMap 

Dense matching MicMac, SURE, and PMVS 

Image stitching Image composition editor,  
Autostitch, and Photoshop 

Deep learning frameworks TensorFlow, Torch, Caffe,  
Theano, and MXNet 
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coordinates on checkpoints and evaluate cross sections 
and residuals on generated point cloud surfaces.

◗◗ Urban Drone Data Set [101]: This is a collection of UAV 
images extracted from 10 video sequences used for SfM. 
About 1 to 2% of the data (about 205 frames) is anno-
tated by three semantic classes (vegetation, buildings, 
and free space) for semantic constraints in 3D recon-
struction. The data were acquired by the DJI-Phantom 4 
at altitudes between 60 and 100 m over the four Chinese 
cities of Beijing, Huludao, Zhengzhou, and Cangzhouo.

◗◗ UAV image mosaicking data set [138]: This data set con-
sists of hundreds of images captured by UAVs. The corre-
sponding DOMs are generated by a digital photogram-
metry grid, which can be used as the gold standard for 
evaluating mosaicking algorithms.

APPLICATIONS
UAV-RS has drawn increasing attention in recent years. It 
is widely used to quickly acquire high-resolution data in 
small areas or fly in high-risk or difficult regions to carry 
out remote sensing tasks. Based on remote sensing prod-
ucts, e.g., DOMs, DEMs, and 3D models, UAV-RS is applied 
for urban planning, engineering monitoring, ecological re-
search, and so on. The applications of UAV-RS seem to be 
unlimited and are continually growing.

Recognizing space limitations, we focus in this section on 
some potential and novel applications. Some other mature 
or long-standing use areas, such as precision agriculture [2], 
coastal and polar monitoring [17], [25], [164], disaster and 
emergency monitoring [6], and atmospheric monitoring 
[165], could not be considered here but can be explored in 
[20], [22], [166], and [167]. In fact, other applications not 
examined here are still booming and deserve attention.

URBAN PLANNING AND MANAGEMENT
In recent years, UAV-RS applications in urban planning 
and management have experienced exponential growth, 
including inspection of infrastructure conditions, monitor-
ing of urban environments and transportation, 3D land-
scape mapping, and urban planning [3], [168].

3D CITY MODELING
The camera-based UAV system provides a powerful tool to 
obtain 3D models of urban scenarios in a noninvasive and 
low-cost manner. The city components are reconstructed 
for urban planning, including visualization, measurement, 
inspection, and illegal building monitoring [169].

In [94], a pilot project was conducted using UAV-RS to 
build high-resolution, large-scale models in complex urban 
areas. Specifically, a Falcon octocopter UAV equipped with 
a Sony camera was employed to acquire images from lower 
than 150 m and generate 3D models of a campus with an 
approximately 6- to 8-cm accuracy. Geographic informa-
tion system layers and near-infrared channels were also 
combined to help in the reconstruction of urban terrain 
and the extraction of streets, buildings, and vegetation.

BUILT ENVIRONMENT MONITORING AND ASSESSMENT
UAV-RS provides benefits in the monitoring and assessing 
of the built environment to maintain and improve living 
conditions. Regular inspection is necessary to assess infra-
structure health and identify any faults at an early stage to 
ensure that the required maintenance is performed. For 
instance, one study assessed building damage based on 
gaps in UAV image-derived 3D point clouds, which were 
identified by support vector machines (SVMs) and random 
forests based on the surrounding damage patterns [171]. 
Another work acquired UAV visible and infrared images to 
monitor the condition and structural health of bridges, in-
cluding bridge deterioration, deck delamination, road sur-
face aging, and crack and deformation detection [172]. The 
inspection helped engineers prioritize critical repair and 
maintenance needs.

UAV-based infrared remote sensing presents an opportu-
nity to inspect and analyze the urban thermal environment, 
building performance, and heat transfer at a micro scale so 
as to maintain the energy efficiency of such infrastructure 
and building stock [170]. An example of scrutinizing the 
thermal environment in buildings using UAVs is shown in 
Figure 14. A 3D thermal model of a building is generated for 
the monitoring and analysis of an edifice’s heat distribution 

16 °C

0 °C(a) (b) (c)

FIGURE 14. A depiction of UAV monitoring of the thermal information of buildings [171]: (a) data acquisition for building inspection by 
UAVs; (b) an infrared image of a building, which reflects thermal information; and (c) a 3D thermal model of a building (taken from Rakha 
and Gorodetsky [170]).
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and leakage to help with the retrofitting of aging and ener-
gy-inefficient building stock and infrastructure.

Urban informal settlements are classified and identi-
fied based on very-high-resolution and up-to-date UAV 
data to support informal settlement upgrading projects 
[173]. Urban vegetation mapping is performed to identify 
land cover types and vegetation coverage in urban areas, 
which is significant for helping planners to take measures 
for urban ecosystem optimization and climate improve-
ment [174].

URBAN TRAFFIC MONITORING
UAVs, like eyes in the sky, provide an overhead point of 
view for surveillance, especially in traffic monitoring [63], 
[187], including the detection and tracking of traffic targets, 
monitoring of crowds, and estimation of traffic density, 

capacity, and flow. Traffic monitoring is beneficial for en-
suring security, optimizing urban mobility, avoiding traffic 
jams and congestion, and analyzing and solving environ-
mental problems affecting urban areas.

Traffic target detection and tracking are two essential 
technologies in urban traffic monitoring. However, UAV-
based detection and tracking pose a daunting task, owing 
to object appearance changes caused by different situa-
tions, such as occlusion, shape deformation, large pose 
variation, onboard mechanical vibration, and changes in 
ambient illumination [181]. Numerous methods have been 
proposed for UAV-based traffic target detection and track-
ing, as shown in Table 7.

Various traffic targets, including cars, pedestrians, roads, 
and bridges, are detected, localized, and tracked by UAV 
visible or infrared cameras. An example of vehicle detection 
and traffic monitoring is presented in Figure 15. In addition 
to traffic scrutiny, UAV-RS can be used for traffic emergency 
monitoring and documentation, pedestrian/vehicle crash 
analysis, and pedestrian/vehicle behavior studies. In [188], 
camera-equipped UAVs are used to record road traffic data 
and measure every vehicle’s position and movements from 
an aerial perspective as a way to analyze naturalistic vehicle 
trajectories and driving behavior.

ENGINEERING MONITORING
UAVs provide a bird’s-eye view for engineers to use in the 
planning, building, and maintenance of their projects [3]. 
With UAVs, construction managers can monitor the en-
tire site with better visibility, so they are more informed 
about project progress. In addition, engineering observa-
tion and inspection by UAVs can ensure field staff safety, 
reduce production risks, and increase on-site productivity 

TABLE 7. RESEARCH WORKS ON UAV-BASED TRAFFIC TARGET DETECTION AND TRACKING.

REFERENCE PLATFORMS AIM OF STUDY METHODS 

[175] Rotary-wing UAV; red, green,  
blue (RGB) camera 

Detect and track moving objects on roads Optical flow 

[176] UAV, gimballed vision sensor Road-bounded vehicles search and tracking Particle filter, point-mass filter

[177] Rotary-wing UAV, RGB camera Car detection and counting SIFT + SVM 

[178] Rotary-wing UAV, RGB camera Car detection, including the number, position,  
and orientation of cars

Similarity measure 

[179] UAV, RGB camera Vehicle detection Multiclass classifier 

[180] Rotary-wing UAV, GoPro camera Vehicle detection Viola–Jones and HOG + SVM 

[181] Rotary-wing UAV, RGB cameras Track container, moving car, and people Optical flow 

[182] Rotary-wing UAV, infrared camera Pedestrian detection and tracking Classification, optical flow 

[183] Rotary-wing UAV, RGB camera Detect, count, and localize cars Deep CNN 

[184] Rotary-wing UAV, RGB camera Visual object tracking (e.g., people and cars) Deep CNN 

[185] UAV, visible camera Vehicle detection Deep CNN 

[186] Rotary-wing UAV, RGB camera A large data set for object detection and tracking Deep CNN 

HOG: histogram of oriented gradient.

(a) (b)

FIGURE 15. An illustration of vehicle detection and traffic monitor-
ing by UAVs based on deep learning: vehicle detection in (a) a 
crossing and (b) a road and park. Orange boxes denote large cars 
and green boxes small cars.
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when compared with artificial means. Recently, UAV-RS 
was widely applied in checking oil and gas pipelines, power 
infrastructure, mine areas, civil engineering sites, engineer-
ing deformation, and railways [189].

OIL AND GAS PIPELINE MONITORING
UAVs provide a cost-effective solution for monitoring oil 
and gas pipelines and their surroundings [190], in con-
trast to conventional foot patrols and aerial surveillance 
by small planes or helicopters, which are time consuming 
and costly. UAVs are used to map pipeline rights of way, 
detect leaks and theft, monitor soil movement, and prevent 
third-party interference [191]. Generally, frequent observa-
tion by UAVs helps to identify corrosion and damage along 
pipelines in a timely fashion so that proactive responses 
and maintenance can be undertaken. For identification of 
pipeline leaks, thermal infrared sensors are widely used to 
detect the temperature differences between the soil and hy-
drocarbon fluids. For the detection of gas leaks, gas detec-
tion sensors are employed. Although gas may disperse into 
the atmosphere, especially in windy weather, the leakage 
location can be estimated by the gas concentration.

POWER INFRASTRUCTURE MONITORING
UAV-RS has also been widely applied to inspect power infra-
structure, including power lines, poles, pylons, and power 
stations, during the planning, construction, and mainte-
nance of electric grids [192]. An example of power facilities 
monitoring is shown in Figure 16. In fact, it is an important 
but formidable task to distinguish power facilities from their 
cluttered background and identify their defects [65]. As one 
of the most important elements of the power infrastructure, 
power lines are often identified by line-based detection, su-
pervised classification, or 3D point cloud-based methods 
[193]. Other power equipment can also be distinguished, 
including conductors, insulators (glass/porcelain cap-and-
pin and composite insulators), tower bodies, spacers, damp-
ers, clamps, arcing horns, and vegetation in corridors. Power 
facility defects (e.g., mechanical damage and corrosion) and 
the distance between vegetation/buildings and power lines 
are often identified using visual inspection, thermography, 
and ultraviolet cameras [194].

Additionally, nuclear plant radioactivity was assessed 
by UAVs equipped with radiation sensors, including map-
ping the evolving distribution of radiation and analyzing 

(a) (b)

(d)

(c)

FIGURE 16. Examples of power facilities monitoring: (a) UAV-based power inspection, (b) a visible image of an insulator, (c) an infrared 
image of a heating insulator, and (d) laser scanner data of a power line corridor acquired by UAVs. [(a)–(c) used courtesy of Xinqiao Wu; 
(d) used courtesy of Leena et al. [192]].
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the contributing radionuclide species and the radiologi-
cal or chemotoxicity risks [195]. In [196], the influence 
of power plants on the surrounding environment was 
gauged, employing UAVs with infrared cameras to map the 
temperature profile of a coal-burning power plant’s ther-
mal effluent.

MINE AREA MONITORING
Mine areas are usually large and located in distant 
mountainous areas, which poses challenges for tradi-
tional inspection methods. But UAV-RS offers a prom-
ising approach to map, monitor, and assess mine areas 
and their surroundings.

UAV-RS is often used to monitor mining activities and 
geomorphic changes in mine areas, providing guidance for 
mine production and safety. For instance, in [197], UAVs 
with hyperspectral frame cameras monitored the surface 
moisture of an area to ensure the environmental safety of 
peat production. The work in [198] used terrestrial laser 
scanning and UAV photogrammetry to map side slopes for 
mine area inventory and change monitoring. Orthophotos 
and 3D models of the mine areas were generated to assess 
the detailed structural-geological setting and identify po-
tentially unstable zones so as to evaluate safety conditions 
and plan for proper remediation.

In addition, dust emissions from mine tailings have 
a large influence on the surrounding environment, and 
they can be mitigated by monitoring and controlling the 
tailing moisture. In [199], thermal sensors mounted on 
UAVs acquired data on iron mine residues to map the 
spatial and temporal variations in the moisture content 
of surface tailings. The relationship between the moisture 
and strength of the ore leftovers was analyzed to help to 
manage the waste.

ECOLOGICAL AND ENVIRONMENTAL MONITORING
For ecological and environmental research, most areas are 
too remote or dangerous to be thoroughly surveyed. Be-
sides, most ecological experiments that involve many re-
petitive tasks are difficult to conduct because of a lack of the 

necessary manpower and time or the high cost of manned 
aerial survey. But the emergence of UAVs opens new op-
portunities and revolutionizes the acquisition of ecologi-
cal and environmental data [200]. Moreover, these aerial 
vehicles make it possible to inspect ecological phenomena 
at appropriate spatial and temporal resolutions—even indi-
vidual organisms and their spatiotemporal dynamics—at 
close range [12]. Recent years have seen the rapid expan-
sion of UAV-RS in ecological and environmental research, 
monitoring, management, and conservation.

POPULATION ECOLOGY
Population ecology aims to study, monitor, and manage 
wild animals and their habitats. It is challenging for ecolo-
gists to approach sensitive or aggressive species and access 
remote areas. UAV-RS makes regular wildlife monitor-
ing, management, and protection possible and provides 
more precise results compared with traditional ground-
based surveying [201]. It is often applied to estimate the 
abundance and distribution of populations, track wildlife 
behavior, map habitat and range, and perform wildlife 
conservation, including antipoaching and illegal trade sur-
veillance [202] (Table 8).

Most species monitored by UAVs are large terrestrial 
mammals (e.g., elephants), aquatic mammals (e.g., whales), 
and birds (e.g., snow geese). However, it should be noted 
that UAVs may disturb wildlife and thus cause behavioral 
and physiological responses when flying at low altitude and 
high speed for close observation. With the increasing use 
of UAVs, particularly in research on vulnerable or sensitive 
species, there is a need to balance the potential disturbance 
to the animals with the benefits obtained from UAV-based 
observation [210].

NATURAL RESOURCES MONITORING
Natural resources, e.g., forests, grasslands, soil, and water, 
are in great need of tracking, management, and conserva-
tion, which increasingly benefit from UAV-RS [26]. Here, 
we take forests and grasslands as examples to illustrate 
UAV-RS applications.

TABLE 8. RESEARCH WORKS ON POPULATION ECOLOGY USING UAV-RS.

ITEM CONTENTS METHODS 

Population estimation Wildlife identification, enumeration, and estimation 
of population status, e.g., number, abundance, and 
distribution

Manual visual inspection [203], deformable part-based 
mode [204], threshold and template matching [205], 
classification [206]

Wildlife tracking Exploring animal behavior (e.g., migratory patterns) 
and habitats so as to sustain species and prevent their 
extinction 

Long-term target tracking, acoustic biotelemetry,  
radio collar tracking [207] 

Habitat and range mapping Monitoring habitat status, including vegetation distribu-
tion and coverage as well as seasonal or environmental 
changes in habitats 

Orthophoto generation, classification [208] 

Conservation of wildlife Antipoaching surveillance and wildlife protection, e.g., 
detecting animals, people/boats engaged in poaching, 
and illegal activities

Target detection [209] 
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◗◗ Forest monitoring: Forest resources are the most common 
recipients of UAV applications [24], including forest 
structure estimation, forest inventory, biomass estima-
tion, biodiversity gauging, disease and pest detection, 
and forest fire monitoring (Table 9). UAV-RS has strong 
advantages for small-area forest inspection. The contin-
ued explosion of forest-monitoring applications relies 
mainly on flight endurance and the observation capa-
bility of the payload.

◗◗ Grassland and shrubland monitoring: Grassland and 
shrubland are often located in remote areas with low 
population density, posing difficulties for assessment, 
monitoring, and management. Because of its flexibil-
ity, high resolution, and low cost, UAV-RS holds great 
potential for grassland and shrubland inspection. Some 

examples are shown in Table 10. UAV-RS is an emerging 
technology that has gained growing popularity in grass-
land monitoring. However, the use of high-standard 
multi- or hyperspectral sensors, which are beneficial 
for species classification, remains problematic because 
of their large weight. In addition, researchers need to be 
encouraged to explore the optimal spatial resolution for 
studying different vegetation characteristics.

SPECIES DISTRIBUTION MODELING
In recent decades, a considerable amount of work has been 
performed to map species distribution and use this collect-
ed information to identify suitable habitats. Species distri-
bution modeling is one such work, which derives species’ 
geographic range based on correlations between known 

TABLE 10. RESEARCH WORKS ON UAV-BASED GRASSLAND AND SHRUBLAND MONITORING.

REFERENCE PLATFORMS PAYLOADS AIM OF STUDY 

[11] Fixed-wing UAV Canon SD 550 Differentiation of bare ground, shrubs, and herbaceous 
vegetation in an arid rangeland 

[132] Fixed-wing UAV Color video camera, Canon SD 900, Mini MCA6 
(multispectral camera system with six cameras) 

Rangeland species-level vegetation classification 

[221] Octocopter UAV Panasonic GX1 digital camera, hyperspectral  
camera 

Estimation of plant traits of grasslands, monitoring  
grassland health status 

[222] Rotary-wing UAV RGB camera, near-infrared camera, MCA6, and 
hyperspectral camera

Evaluation of the applicability of four optical cameras  
for grassland monitoring 

[223] Quadcopter UAV GoPro Hero digital camera Estimation of fractional vegetation cover of alpine 
grassland 

[224] Simulation platform AISA + Eagle imaging spectrometer Hyperspectral classification of grassland species at  
the level of individuals 

[225] UAV RGB camera, hyperspectral camera Mapping the conservation status of Calluna-dominated 
Natura 2000 dwarf shrub habitats

TABLE 9. RESEARCH WORKS ON FOREST MONITORING USING UAV-RS.

ITEM CONTENTS METHODS 

Forest structure Forest 3D structural characterization,  
including digital terrain model, canopy  
height model, and canopy surface model

3D structures: SfM photogrammetry, LiDAR  
and profiling radar [211]

Forest inventory Measuring properties of geometry structure and 
spatial distribution of trees; estimating terrain/ 
understory height and plot-/tree-level metrics

Plot-level metrics: canopy points or image  
classification [212], tree-level metrics, canopy  
height model [213] 

Forest biomass Aboveground biomass estimation UAV-based L-band radar [214], vertical information + L-band  
radar [215] 

Forest biodiversity Monitoring forest biodiversity at the spatial  
and temporal scale 

Quantification of canopy spatial structures and gap  
patterns [216], fallen trees detection and their  
spatiotemporal variation analysis [217] 

Forest health monitoring Monitoring forest health, e.g., identification  
of disease and insect pest damage 

Multi- and hyperspectral remote sensing, dense  
point clouds [218], [219] 

Forest fire monitoring Forest fire monitoring, detection, and fighting Before fires: forest prevention, e.g., create fire risk maps,  
3D vegetation maps

During fires: detect active fires, locate fires, predict fire propagation

After fires: detect active embers, map burned areas, assess fire 
effects [220]
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occurrence records and the environmental conditions at 
occurrence localities [226]. It has been widely applied in 
selecting nature reserves, predicting the effects of environ-
mental change on species range, and assessing the risk of 
species invasions [227].

Because of the spatial biases and insufficient sampling 
of conventional field surveys, UAV-RS has recently become 
a highly effective technology for supplying species occur-
rence data, a result of its ability to quickly and repeatedly ac-
quire high-spatial-resolution imagery at low cost [228]. For 
instance, UAV-RS is used to detect plant and animal species 
in terrestrial and aquatic ecosystems, estimate their popu-
lation and distribution patterns, and identify important 
habitats (e.g., migratory stopovers and breeding grounds) 
[204], [207], [209]. Moreover, UAV-RS provides timely and 
on-demand data acquisition, offering a more dynamic way 
to understand habitat suitability and species range expan-
sion or contraction.

However, UAV-RS may also cause uncertainty and er-
rors in species distribution modeling. These errors come 
mainly from data acquisition and processing algorithms, 
such as those involved with species classification. Thus, 
strict data acquisition and high-precision data processing 
and analysis are necessary.

ENVIRONMENTAL MONITORING AND CONSERVATION
UAVs are used to track environmental processes and 
changes at the spatial and temporal scales, which is chal-
lenging for conventional remote sensing platforms [1], e.g., 
mudflat evolution and morphological dynamics [229]. 
Furthermore, environmental pollution monitoring greatly 
benefits from UAV-RS. In [230], UAVs equipped with mul-
tispectral sensors were employed to map the trophic state of 

reservoirs and investigate water pollution for water quality 
observation. Soil erosion, degradation, and pollution are 
also monitored based on UAV digital terrain models and 
orthophotos. For instance, soil copper contamination was 
detected based on hydrological models using a multirotor 
UAV, and copper accumulation points were estimated at 
plot scales based on microrill network modeling and wet-
land prediction indexes [231].

ARCHEOLOGY AND CULTURAL HERITAGE SITES
The fields of archeology and cultural heritage preservation are 
promising areas for UAV-RS [233]. UAVs are generally used to 
conduct photogrammetric surveys and mapping, documen-
tation, and preservation of archaeological sites [234]. In addi-
tion, the technology is used for archaeological detection and 
discovery. In archeology, buried features may produce small 
changes or anomalies in surface conditions, which can be de-
tected and measured based on UAVs with spectroradiometer, 
digital, or thermal cameras [235].

In the area of cultural heritage sustainment, UAVs are 
often employed to produce high-quality 3D recordings 
and presentations for documentation, inspection, con-
servation, restoration, and museum exhibitions [236]. 
Multiple platforms, e.g., terrestrial laser scanners, ultra-
light aerial platforms, UAVs, and terrestrial photogram-
metry, are often integrated to acquire multiview data for 
3D reconstruction and visualization of cultural relics. 
In Figure 17, a camera-equipped UAV is integrated with a 
terrestrial laser scanner to facilitate complete data acqui-
sition at a historical site, where building façades are cap-
tured by the terrestrial laser scanner and building roofs 
by UAV photogrammetry [232].

Heritage restoration is usually based on precision 3D 
data. In [237], a virtual restoration approach was proposed 
for an ancient plank road. The UAV and a terrestrial laser 
scanner were used to collect detailed 3D data on existing 
plank roads, which were processed to determine the forms 
of plank roads and restore each component, with detailed 
sizes based on mechanical analysis. The virtual restora-
tion model was then generated by adding components and 
background scene into the 3D plank road model.

HUMAN AND SOCIAL UNDERSTANDING
The UAV-RS aerial view makes it a potential solution for 
helping to describe, model, predict, and understand human 
behavior and social interactions. In [34], UAVs were used 
to collect videos of various targets, e.g., pedestrians, bicy-
clists, cars, and buses, to understand pedestrian trajectories 
and their interplay with the physical space as well as with 
the targets that populate such spaces. This could provide a 
great contribution to pedestrian tracking, target trajectory 
prediction, and the understanding of human activity [238]. 

In [188], researchers used a camera-equipped UAV to re-
cord naturalistic vehicle trajectories and the naturalistic be-
havior of road users, which was intended for scenario-based 
safety validation of highly automated vehicles. The data can 

(a)

(b)

FIGURE 17. A 3D digitalization for cultural heritage site recording 
and conservation  (taken from Xu et al. [232]): (a) a dense point 
cloud of the Gutian conference monument and (b) a photorealistic 
3D model of the monument.
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also be used to contribute to driver models and road user 
prediction models. Additionally, UAV-RS is beneficial for 
crowd risk analysis and crowd safety, especially in sports, 
religious, and cultural mass gatherings [239], [240]. UAV-
RS flexibly provides high-resolution, real-time, on-the-spot 
data for people detection, crowd density estimation, and 
crowd behavior analysis so officials can effectively respond 
to potential risk situations. Figure 18 shows some examples. 
There have been only a few recent studies using UAV-RS to 
investigate human and social situations. However, with the 
popularity of UAVs and their availability to everyone, we 
can expect a great expansion of research in this area.

PROSPECTS
Thanks to the progress in UAV platforms and small-size re-
mote sensing sensors as well as the improvement of UAV 
regulations and the opening of the UAV market, UAV-RS is 
gaining increasing popularity in the remote sensing com-
munity. However, many thorny issues that require addi-
tional investigation remain. 

◗◗ UAV platforms: Because of their light weight and small 
size, UAVs often suffer from some inherent defects, in-
cluding platform instability, limited payload capacity, 
and short flight endurance, that pose challenges for ac-
quiring reliable remote sensing data and high-precision 
data processing.

◗◗ Remote sensing sensors: Weight and energy consump-
tion are the main limitations for remote sensing sen-
sors. Thus, it is difficult to use highly precise navigation 
systems, high-standard multi-/hyperspectral cameras, 
lidar, radar, and even massively parallel platforms for 
onboard processing in small UAVs.

◗◗ UAV policy and regulations: This is one of the major fac-
tors impeding the use of UAVs in the remote sensing 
community [30], [31], [33]. Restrictions on airspace use 
prevent researchers from testing all of the possibilities. 
Indeed, UAVs used in civil applications have been de-
veloping faster than the corresponding legislation. Ad-
aptations to the relevant legislation will be necessary in 
the future. Undoubtedly, effective UAV regulations will 
facilitate the wider use of UAVs among remote sensing 
researchers.

◗◗ Data processing: Some challenges have been examined 
in each of the previous sections on the key technolo-
gies. Some other issues, such as robust, high-efficiency 
automation and intelligence for data processing, merit 
more research effort. Also, how to handle massive mul-
tisource/heterogeneous remote sensing data is worth 
investigating.
Current research trends and future insights are dis-

cussed in the following.

PLATFORMS
The continued trend of increasingly miniaturized UAV-RS 
components promises an era of tailored systems for on-
demand remote sensing at extraordinary levels of sensor 

precision and navigational accuracy [33]. Gains are expect-
ed in the following areas.

◗◗ Long flight endurance: Research is ongoing to improve 
battery technology, including a power-tethered UAV 
[241], solar-powered UAV [242], and beamed laser-pow-
ered UAV [243]. Laser power beaming would enable un-
limited flight endurance and in-flight recharging. Thus, 
such UAVs could fly day and night for weeks or possibly 
months without landing.

◗◗ Lightweight, small-size, and high-precision remote sensing 
sensors: Although there is ongoing progress in this di-
rection, these accessories have not yet been sufficiently 
miniaturized [244]. Continuing advances in the min-
iaturization of remote sensing sensors and positioning 
hardware are placing increasingly powerful monitoring 
and mapping equipment on ever-smaller UAV platforms. 
Additional miniaturized sensors will be developed for 
UAV-RS, such as methane detectors and atmospheric 
sensors. This also makes multisensor integration easy 
to implement, strengthening the Earth-observation per-
formance of UAV-RS.

◗◗ Safe, reliable, and stable UAV remote sensing systems: Be-
cause of their light weight and small size, UAV-RS plat-
forms often suffer from instability when there is airflow. 
Thus, developing stable unmanned aircraft deserves 
more research attention [245]. Video stabilization could 
be integrated into data acquisition systems [246]. Fur-
thermore, safe operation has become a global concern. 
Obstacle avoidance is often achieved based on ultra-
sound sensors or depth cameras, which operate at short 
distances. Deep learning-based vision may be a good 
support. Dynamic vision sensors, e.g., event cameras, 
are another promising solution. In addition, safe land-
ing has been largely unaddressed. Deep networks that 
learn to estimate depth and safe landing areas for UAVs 
can be used [247].

◗◗ Autonomous navigation and intelligent UAVs: Although 
UAVs can fly autonomously, operational problems re-
main in challenging environments, such as indoor 
fire scenes, where GPS may fail. And the presence of 
a pilot is still required—due mainly to the lack of de-
vice intelligence. This issue could be solved by artificial 
intelligence, which is able to provide autonomous deci-
sion support and reaction to events, including awareness 

(a) (b)

FIGURE 18. Examples of (a) pedestrian trajectory prediction [34] and 
(b) crowd monitoring (taken from Al-Sheary and Almagbile [239]).
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of the law [23]. For instance, deep learning can be used 
to learn to control UAVs and teach them to fly in com-
plex environments [248], [249]. We envision that UAV-
RS will be capable of automating the entire process, 
from taking off to processing the data to executing pro-
active maneuvers. To this end, more issues need to be 
considered, including intelligent perception of the en-
vironment, precision control, indoor/outdoor seamless 
navigation, and positioning [250], [251].

DATA PROCESSING
The current level of data processing can satisfy most UAV 
applications among remote sensing investigators. However, 
problems remain regarding the need to facilitate data pro-
cessing more automatically, efficiently, and intelligently, 
thus improving UAV-RS’s Earth-observation performance.

◗◗ Aerial view and path planning: One crucial and formida-
ble issue is how to perform view and path planning to 
ensure complete and accurate coverage of the surveyed 
area with minimum flight time. UAV-RS often acquires 
data either under manual control or using predesigned 
flight paths, with the camera setting in a fixed direc-
tion, e.g., vertical or oblique. Consequently, it is diffi-
cult to perform complete and dense coverage, especially 
in urban environments. One promising solution is to 
take the initial scene reconstruction from the nadir ac-
quisition as a reference to continuously optimize the 
view and position [252]. An example of aerial view and 
path planning is shown in Figure 19.

◗◗ Robust data processing: It is expected that UAV-RS will 
be able to process remote sensing data of different 
sources, qualities, resolutions, scales, distortions, and 
so on, which is an imperative but challenging issue. 
For instance, the technology should be adept at han-
dling images that are water covered, cloud sheltered, 
or of arbitrary attitude; photography loopholes; and 
multisource images (close-range, low-altitude, and 
oblique images or infrared and visible images) for aeri-
al triangulation. Progress on these issues is anticipated 
in the near future.

◗◗ Real-time/onboard data processing: Real-time or onboard 
data processing plays a significant role in UAV-RS, 

especially in time-critical remote sensing [253]. With 
the wave of sensor miniaturization, it is expected that 
FPGAs and GPUs will be designed to be light in weight, 
low in energy consumption, and adaptable to miniatur-
ized UAVs for onboard processing. In addition, the col-
lected data should be processed based on high-perfor-
mance computing, such as cloud computing.

◗◗ Deep learning for UAV-RS: Great success has been achieved 
in image classification and target detection [254]–[257]. 
However, there is a great deal of room for deep learn-
ing applied in UAV-RS 3D geometric vision, especially 
in image matching and pose estimation. Some critical 
issues that should be investigated include the lack of a 
large-scale annotation data set, weakly supervised learn-
ing for limited annotated data, and transfer learning for 
off-the-shelf deep models.

◗◗ 3D semantic computing: There is a trend toward learning 
to estimate 3D geometry and semantics jointly. More 
geometric priors should be introduced to capture the 
complex semantic and geometric dependencies of the 
3D world. Another issue is the high memory consump-
tion resulting from the need to store indicator variables 
for every semantic label and transition, an issue that 
should be researched [258].

◗◗ Information mining from UAV-RS big data: Data collected 
from UAV flights can reach hundreds of megabytes per 
hectare of surveyed area. Moreover, UAVs can form a 
remote sensing network to provide fast, cloudless, cen-
timeter-level, and hour-level data collection and accu-
rate service on the Internet. This will inevitably generate 
massive amounts of remote sensing data. Knowledge 
mining from massive and heterogeneous remote sens-
ing data is a great challenge. Deep learning and cloud 
computing shed light on this issue. Also, optimizing 
data acquisition to ensure complete and accurate cover-
age with minimum data volume and redundancy is cru-
cial for reducing the difficulty of information mining.

APPLICATIONS
With advances in UAV platforms and remote sensing sen-
sors, there is a potential for wider applications. Attention 
may shift from monitoring Earth environments to human 
and social understanding, such as individual/group behav-
ior analysis and infectious disease mapping [259]. UAV-RS 
also holds potential for the autonomous driving communi-
ty. UAVs are employed to extend the perception capabilities 
of a vehicle by using a small quadrotor to autonomously 
locate and observe regions not visible to the vehicle and 
detect potentially unsafe obstacles, such as pedestrians or 
other cars [35]. More applications are on the way.

CONCLUSIONS
Compared to conventional platforms (e.g., manned aircraft 
and satellites), UAV-RS presents several advantages: flex-
ibility, maneuverability, efficiency, high spatial/temporal 
resolution, low altitude, and low cost, among others. 

FIGURE 19. An illustration of aerial path planning in urban building 
scenes (taken from Smith et al. [252]).
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In this article, we systematically reviewed the current sta-
tus of UAVs in the remote sensing community, including 
UAV-based data processing, applications, current trends, 
and future prospects. Some conclusions can be drawn from 
this survey.

◗◗ The inspiring advances in UAV platforms and minia-
turized sensors have allowed UAV-RS to meet critical 
spatial, spectral, and temporal resolution requirements, 
offering a powerful supplement to other remote sens-
ing platforms. UAV-RS has many advantages in accom-
modating the ever-increasing demand for small-area, 
timely, and fine surveying and mapping.

◗◗ Because of the characteristics of UAV platforms, many 
specialized data processing technologies have been de-
signed for UAV-RS. Technologically speaking, UAV-RS 
is mature enough to support the development of ge-
neric geoinformation products and services. With recent 
progress in artificial intelligence (e.g., deep learning) 
and robotics, UAV-RS will likely experience a tremen-
dous technological leap toward automatic, efficient, and 
intelligent services.

◗◗ Many current versions of UAV-RS data processing soft-
ware are commercially available, and developments in 
UAV-RS technology are continuing apace, all of which 
will promote the growth of related applications. 

Challenges still exist and hinder UAV-RS progress. Much 
additional research is required, which is being performed 
with the advantage of low entrance barriers. The rapid ad-
vancement of UAV-RS seems to be unstoppable, and more 
new technologies and applications in the area will surely 
appear in coming years.
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[97]	 O. Özyeşil, V. Vladislav, B. Ronen, and S. Amit, “A survey of struc-
ture from motion,” Acta Numerica, vol. 26, pp. 305–364, May 
2017. 

[98]	 H. Cui, X. Gao, S. Shen, and Z. Hu, “HSfM: Hybrid structure-
from-motion,” in Proc. IEEE Computer Vision and Pattern Recog-
nition Conf., Honolulu, HI, 2017, pp. 1212–1221. doi: 10.1109/
CVPR.2017.257. 

[99]	 S. Zhu et al., Parallel structure from motion from local incre-
ment to global averaging. 2017. [Online]. Available: https://
arxiv.org/abs/1702.08601

[100]	S. Y. Bao, M. Bagra, Y. Chao, and S. Savarese, “Semantic struc-
ture from motion with points, regions, and objects,” in Proc. 
IEEE Computer Vision and Pattern Recognition Conf., Providence, 
RI, 2012, pp. 2703–2710.

[101]	Y. Chen, Y. Wang, P. Lu, Y. Chen, and G. Wang, “Large-scale 
structure from motion with semantic constraints of aerial im-
ages,” in Proc. Chinese Conf. Pattern Recognition and Computer Vi-
sion, 2018, pp. 347–359.

[102]	D. Turner, A. Lucieer, and L. Wallace, “Direct georeferencing of 
ultrahigh-resolution UAV imagery,” IEEE Trans. Geosci. Remote 
Sens., vol. 52, no. 5, pp. 2738–2745, 2014. 

[103]	Z. Yin and J. Shi, “GeoNet: Unsupervised learning of dense 
depth, optical flow and camera pose,” in Proc. IEEE Computer 
Vision and Pattern Recognition Conf., 2018, pp. 1983–1992.

[104]	A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A con-
volutional network for real-time 6-DOF camera relocaliza-
tion,” in Proc. Int. Conf. Computer Vision, Santiago, Chile, 
2015, pp. 2938–2946.

[105]	T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised 
learning of depth and ego-motion from video,” in Proc. IEEE 



SEPTEMBER 2019    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        59 

Computer Vision and Pattern Recognition Conf., 2017, pp. 5667–
5675. doi: 10.1109/CVPR.2017.700.

[106]	S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and 
K. Fragkiadaki, SfM-Net: Learning of structure and motion 
from video. Computing Research Repository. 2017. [Online]. 
Available: https://arxiv.org/abs/1704.07804

[107]	V. Rengarajan, A. N. Rajagopalan, and R. Aravind, “From bows 
to arrows: Rolling shutter rectification of urban scenes,” in Proc. 
IEEE Computer Vision and Pattern Recognition Conf., Las Vegas, 
NV, 2016, pp. 2773–2781.

[108]	V. Rengarajan, Y. Balaji, and A. N. Rajagopalan, “Unrolling the 
shutter: CNN to correct motion distortions,” in Proc. IEEE Com-
puter Vision and Pattern Recognition Conf., Honolulu, HI, 2017, 
pp. 2345–2353.

[109]	S. Im, H. Ha, G. Choe, H. Jeon, K. Joo, and I. S. Kweon, “High 
quality structure from small motion for rolling shutter camer-
as,” in Proc. Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 
837–845.

[110]	Y. Furukawa and H. Carlos, “Multi-view stereo: A tutorial,” 
Found. Trends Comput. Graph. Vision, vol. 9, no. 1-2, pp. 1–148, 
2015. doi: 10.1561/0600000052.

[111]	S. Harwin and A. Lucieer, “Assessing the accuracy of georefer-
enced point clouds produced via multi-view stereopsis from un-
manned aerial vehicle (UAV) imagery,” Remote Sens., vol. 4, no. 
6, pp. 1573–1599, 2012. 

[112]	J. Liu, B. Guo, W. Jiang, W. Gong, and X. Xiao, “Epipolar rec-
tification with minimum perspective distortion for oblique 
images,” Sensors, vol. 16, no. 11, p. 1870, 2016. doi: 10.3390/
s16111870. 

[113]	J. Li, Y. Liu, S. Du, P. Wu, and Z. Xu, “Hierarchical and adap-
tive phase correlation for precise disparity estimation of UAV 
images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 
7092–7104, 2016.

[114]	J. Zbontar and Y. LeCun, “Stereo matching by training a con-
volutional neural network to compare image patches,” J. Mach. 
Learning Res., vol. 17, no. 65, pp. 1–32, 2016.

[115]	A. Seki and M. Pollefeys, “SGM-Nets: Semi-global matching 
with neural networks,” in Proc. IEEE Computer Vision and Pattern 
Recognition Conf., 2017, pp. 6640–6649.

[116]	A. Kendall, H. Martirosyan, S. Dasgupta, and P. Henry, 
“End-to-end learning of geometry and context for deep 
stereo regression,” in Proc. Int. Conf. Computer Vision, 2017,  
pp. 66–75.

[117]	M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang, “SurfaceNet: An 
end-to-end 3D neural network for multiview stereopsis,” in 
Proc. Int. Conf. Computer Vision, 2017, pp. 2326–2334.

[118]	A. Kar, C. Häne, and J. Malik, “Learning a multi-view stereo ma-
chine,” in Proc. Neural Information Processing Systems Conf., 2017, 
pp. 364–375.

[119]	P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, 
“DeepMVS: Learning multi-view stereopsis,” in Proc. IEEE Com-
puter Vision and Pattern Recognition Conf., 2018, pp. 2821–2830. 

[120]	Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “MVSNet: Depth 
inference for unstructured multi-view stereo,” in Proc. European 
Conf. Computer Vision, 2018, pp. 785–801. doi: 10.1007/978-3-
030-01237-3_47.

[121]	J. Liu, S. Ji, C. Zhang, and Z. Qin, “Evaluation of deep learn-
ing based stereo matching methods: From ground to aerial 
images,” ISPRS Int. Archives Photogrammetry Remote Sens. Spatial 
Inform. Sci., vol. 42, no. 2, pp. 593–597, 2018. 

[122]	S. Wu et al., “Specular-to-diffuse translation for multi-view re-
construction,” in Proc. European Conf. Computer Vision, 2018, pp. 
193–211.

[123]	S. Kumar, Y. Dai, and H. Li, “Monocular dense 3D reconstruc-
tion of a complex dynamic scene from two perspective frames,” 
in Proc. Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 4649–
4657.

[124]	X. Gao, L. Hu, H. Cui, S. Shen, and H. Zhanyi, “Accurate and ef-
ficient ground-to-aerial model alignment,” Pattern Recogn., vol. 
76, no. 4, pp. 288–302, 2018.

[125]	T. Xiang, G.-S. Xia, and L. Zhang, “Image stitching with per-
spective-preserving warping,” ISPRS Int. Archives Photogramme-
try Remote Sens. Spatial Inform. Sci., vol. 3, no. 3, pp. 287–294, 
2016. 

[126]	T.-Z. Xiang, G.-S. Xia, L. Zhang, and N. Huang, “Locally warp-
ing-based image stitching by imposing line constraints,” in 
Proc. Int. Conf. Pattern Recognition, Cancun, Mexico, 2016, pp. 
4178–4183.

[127]	X. Li, N. Hui, H. Shen, Y. Fu, and L. Zhang, “A robust mosaick-
ing procedure for high spatial resolution remote sensing imag-
es,” ISPRS J. Photogrammetry Remote Sens., vol. 109, pp. 108–125, 
Nov. 2015.

[128]	J. Tian, X. Li, F. Duan, J. Wang, and Y. Ou, “An efficient seam 
elimination method for UAV images based on Wallis dodging 
and Gaussian distance weight enhancement,” Sensors, vol. 16, 
no. 5, p. 662, 2016. doi: 10.3390/s16050662.

[129]	M. Song, Z. Ji, S. Huang, and J. Fu, “Mosaicking UAV orthoim-
ages using bounded Voronoi diagrams and watersheds,” Int. 
J. Remote Sens., vol. 39, no. 15–16, pp. 4960–4979, 2018. doi: 
10.1080/01431161.2017.1350309.

[130]	M. R. Faraji, X. Qi, and A. Jensen, “Computer vision-based 
orthorectification and georeferencing of aerial image sets,” J. 
Appl. Remote Sens., vol. 10, no. 3, p. 036027, 2016. doi: 10.1117/1.
JRS.10.036027.

[131]	G. Zhang, Y. He, W. Chen, J. Jia, and H. Bao, “Multi-viewpoint 
panorama construction with wide-baseline images,” IEEE 
Trans. Image Process., vol. 25, no. 7, pp. 3099–3111, 2016.

[132]	S. L. Andrea, A. G. Mark, M. S. Caitriana, and R. Albert, “Mul-
tispectral remote sensing from unmanned aircraft: Image 
processing workflows and applications for rangeland environ-
ments,” Remote Sens., vol. 3, no. 12, pp. 2529–2551, 2011. 

[133]	S. Bang, H. Kim, and H. Kim, “UAV-based automatic generation 
of high-resolution panorama at a construction site with a focus 
on preprocessing for image stitching,” Automation Construction, 
vol. 84, pp. 70–80, Dec. 2017. 

[134]	H. Yu, J. Wang, Y. Bai, W. Yang, and G.-S. Xia, “Analysis of 
large-scale UAV images using a multi-scale hierarchical rep-
resentation,” Geo-spatial Inform. Sci., vol. 21, no. 1, pp. 33–44, 
2018. 

[135]	M. Xia, J. Yao, R. Xie, L. Li, and W. Zhang, “Globally consistent 
alignment for planar mosaicking via topology analysis,” Pattern 
Recogn., vol. 66, pp. 239–252, June 2017. 



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    SEPTEMBER 201960 

[136]	J. Zaragoza, T.-J. Chin, M. S. Brown, and D. Suter, “As-projec-
tive-as-possible image stitching with moving DLT,” IEEE Trans. 
Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1285–1298, 2014. 

[137]	J. Li, Z. Wang, S. Lai, Y. Zhai, and M. Zhang, “Parallax-tolerant 
image stitching based on robust elastic warping,” IEEE Trans. 
Multimedia, vol. 20, no. 7, pp. 1672–1687, 2018. 

[138]	Y. Xu, J. Ou, H. He, X. Zhang, and J. Mills, “Mosaicking of un-
manned aerial vehicle imagery in the absence of camera poses,” 
Remote Sens., vol. 8, no. 3, p. 204, 2016. doi: 10.3390/rs8030204.

[139]	T.-Z. Xiang, G.-S. Xia, X. Bai, and L. Zhang, “Image stitching 
by line-guided local warping with global similarity constraint,” 
Pattern Recogn., vol. 83, pp. 481–497, Nov. 2018. 

[140]	Y.-S. Chen and Y.-Y. Chuang, “Natural image stitching with the 
global similarity prior,” in Proc. European Conf. Computer Vision, 
Amsterdam, The Netherlands, 2016, pp. 186–201. 

[141]	K. Lin, N. Jiang, L.-F. Cheong, M. Do, and J. Lu, “SEAGULL: 
Seam-guided local alignment for parallax-tolerant image stitch-
ing,” in Proc. European Conf. Computer Vision, Amsterdam, The 
Netherlands, 2016, pp. 370–385.

[142]	J. Guo, Z. Pan, B. Lei, and C. Ding, “Automatic color correction 
for multisource remote sensing images with Wasserstein CNN,” 
Remote Sens., vol. 9, no. 5, pp. 483, 2017. 

[143]	T. Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, and V. 
Kumar, “Unsupervised deep homography: A fast and robust 
homography estimation model,” IEEE Robot. Autom. Lett., vol. 
3, no. 3, pp. 2346–2353, 2018. 

[144]	M. Nagai, T. Chen, R. Shibasaki, H. Kumagai, and A. Ahmed, 
“UAV-borne 3-D mapping system by multisensor integration,” 
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 701–708, 
2009. 

[145]	M. Schmitt and X. X. Zhu, “Data fusion and remote sensing: An 
ever-growing relationship,” IEEE Geosci. Remote Sens. Mag., vol. 
4, no. 4, pp. 6–23, 2016. 

[146]	T. Xiang, L. Yan, and R. Gao, “A fusion algorithm for infrared 
and visible images based on adaptive dual-channel unit-linking 
PCNN in NSCT domain,” Infrared Phys. Technol., vol. 69, 
pp. 53–61, Mar. 2015. 

[147]	Y. S. Kim, J. H. Lee, and J. B. Ra, “Multi-sensor image registra-
tion based on intensity and edge orientation information,” Pat-
tern Recogn., vol. 41, no. 11, pp. 3356–3365, 2008. 

[148]	Y. Ye, J. Shan, L. Bruzzone, and L. Shen, “Robust registration of 
multimodal remote sensing images based on structural similar-
ity,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2941–
2958, 2017. 

[149]	J. Han, E. J. Pauwels, and D. Z. Paul, “Visible and infrared im-
age registration in man-made environments employing hybrid 
visual features,” Pattern Recogn. Lett., vol. 34, no. 1, pp. 42–51, 
2013. 

[150]	S. Yahyanejad and B. Rinner, “A fast and mobile system for reg-
istration of low-altitude visual and thermal aerial images us-
ing multiple small-scale UAVs,” ISPRS J. Photogrammetry Remote 
Sens., vol. 104, pp. 189–202, June 2015. 

[151]	H. Chen, N. Xue, Y. Zhang, Q. Lu, and G.-S. Xia, “Robust vis-
ible-infrared image matching by exploiting dominant edge 
orientations,” Pattern Recogn. Lett., 2019, to be published. doi: 
10.1016/j.patrec.2018.10.036.

[152]	B. Yang and C. Chen, “Automatic registration of UAV-borne se-
quent images and LiDAR data,” ISPRS J. Photogrammetry Remote 
Sens., vol. 101, pp. 262–274, Mar. 2015. 

[153]	S. Liu et al., “A linear feature-based approach for the registra-
tion of unmanned aerial vehicle remotely-sensed images and 
airborne LiDAR data,” Remote Sens., vol. 8, no. 2, p. 82, 2016. 
doi: 10.3390/rs8020082.

[154]	N. Tijtgat, W. V. Ranst, B. Volckaert, T. Goedeme, and F. D. 
Turck, “Embedded real-time object detection for a UAV warn-
ing system,” in Proc. Int. Conf. Computer Vision Workshop, Venice, 
Italy, 2017, pp. 2110–2118.

[155]	Y. Cheng, D. Wang, P. Zhou, and T. Zhang, A survey of model 
compression and acceleration for deep neural networks. 2017. 
[Online]. Available: https://arxiv.org/abs/1710.09282 

[156]	C. A. Lee, S. D. Gasster, A. Plaza, C. Chang, and B. Huang, “Re-
cent developments in high performance computing for remote 
sensing: A review,” IEEE J. Sel. Topics Appl. Earth Observ. in Re-
mote Sens., vol. 4, no. 3, pp. 508–527, 2011. 

[157]	P. Ghamisi et al., “Advances in hyperspectral image and signal 
processing: A comprehensive overview of the state of the art,” 
IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 37–78, 2017. 

[158]	Z. Hong, X. Tong, W. Cao, S. Jiang, P. Chen, and S. Liu, “Rapid 
three-dimensional detection approach for building damage due to 
earthquakes by the use of parallel processing of unmanned aerial 
vehicle imagery,” J. Appl. Remote Sens., vol. 9, no. 1, pp. 1–18, 2015. 

[159]	L. Chen, Y. Ma, P. Liu, J. Wei, W. Jie, and J. He, “A review of par-
allel computing for large-scale remote sensing image mosaick-
ing,” Cluster Computing, vol. 18, no. 2, pp. 517–529, 2015. 

[160]	R. Zhang et al., “Distributed very large Scale bundle adjustment 
by global camera consensus,” IEEE Int. Conf. Computer Vision, 
Venice, Italy, 2017, pp. 29–38. doi: 10.1109/ICCV.2017.13.

[161]	W. Kyle and S. Noah, “Robust global translations with 1DSFM,” 
in Proc. European Conf. Computer Vision, vol. 8691, 2014, pp. 61–75. 

[162]	Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-
view stereopsis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, 
no. 8, pp. 1362–1376, 2010. 

[163]	F. Nex, M. Gerke, F. Remondino, P. H-J, M. Bäumker, and A. 
Zurhorst, “ISPRS benchmark for multi-platform photogram-
metry,” ISPRS Ann. Photogrammetry Remote Sens. Spatial Inform. 
Sci., vol. II, no. 3/W4, 2015, pp. 135–142. 

[164]	J. A. Gonçalves and R. Henriques, “UAV photogrammetry for 
topographic monitoring of coastal areas,” ISPRS J. Photogram-
metry Remote Sens., vol. 104, pp. 101–111, June 2015. 

[165]	J. Elston, B. Argrow, M. Stachura, D. Weibel, D. Lawrence, and 
D. Pope, “Overview of small fixed-wing unmanned aircraft for 
meteorological sampling,” J. Atmos. Ocean. Technol, vol. 32, no. 
1, pp. 97–115, 2015. 

[166]	H. Shakhatreh et al., Unmanned aerial vehicles: A survey on 
civil applications and key research challenges. Computing 
Research Repository. [Online]. Available: https://arxiv.org/
abs/1805.00881, 2018.

[167]	A. V. Parshin, V. A. Morozov, A. V. Blinov, A. N. Kosterev, and 
A. E. Budyak, “Low-altitude geophysical magnetic prospecting 
based on multirotor UAV as a promising replacement for tradi-
tional ground survey,” Geo-spatial Inform. Sci., vol. 21, no. 1, pp. 
67–74, 2018. 



SEPTEMBER 2019    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        61 

[168]	Y. Ham, K. K. Han, J. J. Lin, and M. Golparvar-Fard, “Visual moni-
toring of civil infrastructure systems via camera-equipped un-
manned aerial vehicles (UAVs): A review of related works,” Vis. 
Eng., vol. 4, no. 1, pp. 1–8, 2016. doi: 10.1186/s40327-015-0029-z.

[169]	F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin, 
“Applications of 3D city models: State of the art review,” ISPRS 
Int. J. Geo-Inform., vol. 4, no. 4, pp. 2842–2889, 2015. 

[170]	T. Rakha and A. Gorodetsky, “Review of unmanned aerial sys-
tem (UAS) applications in the built environment: Towards au-
tomated building inspection procedures using drones,” Automa-
tion Construction, vol. 93, pp. 252–264, Sept. 2018. 

[171]	A. Vetrivel, M. Gerke, N. Kerle, and G. Vosselman, “Identifica-
tion of damage in buildings based on gaps in 3D point clouds 
from very high resolution oblique airborne images,” ISPRS J. 
Photogrammetry Remote Sens., vol. 105, pp. 61–78, July 2015. 

[172]	A. Ellenberg, A. Kontsos, F. Moon, and I. Bartoli, “Bridge deck 
delamination identification from unmanned aerial vehicle in-
frared imagery,” Automation Construction, vol. 72, pp. 155–165, 
Dec. 2016.

[173]	C. M. Gevaert, C. Persello, R. Sliuzas, and G. Vosselman, “Infor-
mal settlement classification using point-cloud and image-based 
features from UAV data,” ISPRS J. Photogrammetry Remote Sens., 
vol. 125, pp. 225–236, Mar. 2017. 

[174]	Q. Feng, J. Liu, and J. Gong, “UAV remote sensing for urban 
vegetation mapping using random forest and texture analysis,” 
Remote Sens., vol. 7, no. 1, pp. 1074–1094, 2015. 

[175]	R. R.-C. Gonzalo, T. Stephen, D. C. Jaime, B. Antonio, and M. 
Bruce, “A real-time method to detect and track moving objects 
(DATMO) from unmanned aerial vehicles (UAVs) using a single 
camera,” Remote Sens., vol. 4, no. 12, pp. 1090–1111, 2012. 

[176]	S. Per, O. Umut, T. O. R. David, and G. Fredrik, “Road target 
search and tracking with gimballed vision sensor on an un-
manned aerial vehicle,” Remote Sens., vol. 4, no. 7, pp. 2076–
2111, 2012. 

[177]	T. Moranduzzo and F. Melgani, “Automatic car counting meth-
od for unmanned aerial vehicle images,” IEEE Trans. Geosci. Re-
mote Sens., vol. 52, no. 3, pp. 1635–1647, 2014. 

[178]	M. Thomas and M. Farid, “Detecting cars in UAV images with 
a catalog-based approach,” IEEE Trans. Geosci. Remote Sens., vol. 
52, no. 10, pp. 6356–6367, 2014. 

[179]	K. Liu and G. Mattyus, “Fast multiclass vehicle detection on 
aerial images,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 9, pp. 
1938–1942, 2015. 

[180]	Y. Xu, G. Yu, Y. Wang, X. Wu, and Y. Ma, “A hybrid vehicle detection 
method based on Viola-Jones and HOG + SVM from UAV images,” 
Sensors, vol. 16, no. 8, p. 1325, 2016. doi: 10.3390/s16081325.

[181]	C. Fu, R. Duan, D. Kircali, and E. Kayacan, “Onboard robust vi-
sual tracking for UAVs using a reliable global-local object mod-
el,” Sensors, vol. 16, no. 9, p. 406, 2016. doi:10.3390/s16091406.

[182]	Y. Ma, X. Wu, G. Yu, Y. Xu, and Y. Wang, “Pedestrian detec-
tion and tracking from low-resolution unmanned aerial vehicle 
thermal imagery,” Sensors, vol. 16, no. 4, pp. 446, 2016. doi: 
10.3390/s16040446.

[183]	M.-R. Hsieh, Y.-L. Lin, and W. H. Hsu, “Drone-based object 
counting by spatially regularized regional proposal networks,” 
in Proc. Int. Conf. Computer Vision, 2017, pp. 4145–4153.

[184]	S. Li and D.-Y. Yeung, “Visual object tracking for unmanned 
aerial vehicles: A benchmark and new motion models,” in Proc. 
Association for the Advancement of Artificial Intelligence (AAAI) 
Conference on Artificial Intelligence, 2017, pp. 4140–4146.

[185]	M. Y. Yang, W. Liao, X. Li, and B. Rosenhahn, Vehicle detection 
in aerial images. Computing Research Repository. 2018. [On-
line]. Available: https://arxiv.org/abs/1801.07339

[186]	D. Du et al., “The unmanned aerial vehicle benchmark: Object 
detection and tracking,” in Proc. European Conf. Computer Vision, 
2018, pp. 375–391. 

[187]	J. Leitloff, D. Rosenbaum, F. Kurz, O. Meynberg, and P. Re-
inartz, “An operational system for estimating road traffic in-
formation from aerial images,” Remote Sens., vol. 6, no. 11, 
pp. 11,315–11,341, 2014. 

[188]	R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD 
dataset: A drone dataset of naturalistic vehicle trajectories on 
German highways for validation of highly automated driv-
ing systems,” in Proc. IEEE 21st Int. Conf. Intelligent Transpor-
tation Systems (ITSC), 2018, pp. 2118–2125. doi: 10.1109/
ITSC.2018.8569552.

[189]	S. Siebert and J. Teizer, “Mobile 3D mapping for surveying work 
projects using an unmanned aerial vehicle (UAV) system,” Au-
tomation Construction, vol. 41, pp. 1–14, May 2014. 

[190]	T. E. Barchyn, C. H. Hugenholtz, S. Myshak, and J. Bauer, “A 
UAV-based system for detecting natural gas leaks,” J. Unmanned 
Veh. Syst., vol. 6, no. 1, pp. 18–30, 2018. 

[191]	C. Gomez and D. R. Green, “Small unmanned airborne systems 
to support oil and gas pipeline monitoring and mapping,” Arab. 
J. Geosci., vol. 10, no. 9, pp. 1–17, 2017. 

[192]	M. Leena et al., ”Remote sensing methods for power line cor-
ridor surveys,” ISPRS J. Photogrammetry Remote Sens., vol. 119, 
no. 9, pp. 10–31, 2016.

[193]	L. Zhu and H. Juha, “Fully-automated power line extraction 
from airborne laser scanning point clouds in forest areas,” Re-
mote Sens., vol. 6, no. 11, pp. 11,267–11,282, 2014. 

[194]	K. Jaka, P. Franjo, and L. Bostjan, “A survey of mobile robots for 
distribution power line inspection,” IEEE Trans. Power Del., vol. 
25, no. 1, pp. 485–493, 2010. 

[195]	P. Martin, J. Moore, J. Fardoulis, O. Payton, and T. Scott, “Radio-
logical assessment on interest areas on the Sellafield nuclear site via 
unmanned aerial vehicle,” Remote Sens., vol. 8, no. 11, p. 913, 2016. 
doi: 10.3390/rs8110913. 

[196]	A. DeMario et al., “Water plume temperature measurements by an 
unmanned aerial system (UAS),” Sensors, vol. 17, no. 2, p. 306, 2017. 
doi: 10.3390/s17020306. 

[197]	H. Eija et al., “Remote sensing of 3-D geometry and surface 
moisture of a peat production area using hyperspectral frame 
cameras in visible to short-wave infrared spectral ranges on-
board a small unmanned airborne vehicle (UAV),” IEEE Trans. 
Geosci. Remote Sens., vol. 54, no. 9, pp. 5440–5454, 2016. 

[198]	X. Tong et al., “Integration of UAV-based photogrammetry and 
terrestrial laser scanning for the three-dimensional mapping 
and monitoring of open-pit mine areas,” Remote Sens., vol. 7, 
no. 6, pp. 6635–6662, 2015. 

[199]	B. Zwissler, T. Oommen, S. Vitton, and E. A. Seagren, “Thermal 
remote sensing for moisture content monitoring of mine 



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    SEPTEMBER 201962 

tailings: Laboratory study,” Environ. Eng. Geosci., vol. 23, no. 3, 
pp. 1078–7275, 2017. 

[200]	P. K. Lian and A. W. Serge, “Dawn of drone ecology: Low-cost 
autonomous aerial vehicles for conservation,” Trop. Conserv. 
Sci., vol. 5, no. 2, pp. 121–132, 2012. 

[201]	J. C. Hodgson, S. M. Baylis, R. Mott, A. Herrod, and R. H. Clarke, 
“Precision wildlife monitoring using unmanned aerial vehicles,” 
Sci. Rep., vol. 6, no. 1, pp. 1–7, 2016. doi: 10.1038/srep22574.

[202]	L. Julie, L. Jonathan, S. Jean, L. Philippe, and V. Cédric, “Are 
unmanned aircraft systems (UASs) the future of wildlife moni-
toring? A review of accomplishments and challenges,” Mammal 
Rev., vol. 45, no. 4, pp. 239–252, 2015. 

[203]	A. Hodgson, N. Kelly, and D. Peel, “Unmanned aerial vehicles 
(UAVs) for surveying marine fauna: A dugong case study,” 
PLoS One, vol. 8, no. 11, p. e79556, 2013. doi: 10.1371/journal.
pone.0079556.

[204]	C. V. G. Jan, R. V. Camiel, M. Pascal, E. Kitso, P. K. Lian, and W. 
Serge, “Nature conservation drones for automatic localization 
and counting of animals,” in Proc. European Conf. Computer Vi-
sion Workshop, Zurich, 2014, pp. 255–270.

[205]	L. Gonzalez, G. Montes, E. Puig, S. Johnson, K. Mengersen, and 
K. Gaston, “Unmanned aerial vehicles (UAVs) and artificial 
intelligence revolutionizing wildlife monitoring and conserva-
tion,” Sensors, vol. 16, no. 1, p. 97, 2016. doi: 10.3390/s16010097.

[206]	A. C. Seymour, J. Dale, M. Hammill, P. N. Halpin, and D. W. John-
ston, “Automated detection and enumeration of marine wildlife 
using unmanned aircraft systems (UAS) and thermal imagery,” Sci. 
Rep., vol. 7, no. 3, p. 45127, 2017. doi: 10.1038/srep45127.

[207]	F. Korner, R. Speck, A. H. Göktoğan, and S. Sukkarieh, “Autono-
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